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ABSTRACT

The Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimila-

tion method (referred to as PODEn4DVar) is a hybrid assimilation method that exploits the strengths of both

the ensemble Kalman filter (EnKF) and the 4DVar assimilation method. Its feasibility and validity have been

demonstrated using ideal models through observing system simulation experiments (OSSEs). In this study,

we further utilise this approach to build a PODEn4DVar-based radar data assimilation scheme (PRAS). In a

PRAS, radar observations including radial velocity and reflectivity, after some necessary data preprocessing, are

assimilated directly to improve model initialisation. A group of single-observation-based OSSEs are first

designed to generally evaluate the validity of PRAS. Subsequently, a group of comparison experiments are also

carried out between PRAS and an LETKF-based radar assimilation scheme (LRAS), which shows that PRAS is

able to produce results better than (at least as good as) LRAS. Thirdly, to evaluate the potential impact for

PRAS in the operational context, a group of cycling assimilation experiments of radar data are performed,

which demonstrates that PRAS can gradually improve the accuracy of analysis field by cycling assimilation.

Finally, a heavy convective-rainfall case study was selected to investigate the performance of PRAS in

assimilating real radar observations and the impacts of assimilating radar observations on numerical forecasts,

with the Weather Research and Forecasting (WRF) model as our forecasting model. The results show that

significant improvements in predicting heavy rainfall can be achieved due to the improved initial conditions for

the convective system’s dynamics and microphysics after assimilating the radar observations with PRAS. In

summary, the results show that the PODEn4DVar is a promising method for atmospheric data assimilation.
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1. Introduction

Recent studies have shown that assimilation of radar data

can improve the short-term forecasts of convective systems

by incorporating the initial conditions of mesoscale storm

structures (Weygandt et al., 2002; Sun, 2005; Dawson and

Xue, 2006; Hu et al., 2006; Zhao et al., 2006; Xiao et al.,

2007, 2008; Pu et al., 2009; Li and John, 2010; Kawabata

et al., 2011). In particular, both the four-dimensional

variational (4DVar) data assimilation method (e.g. Lewis

and Derber, 1985; Courtier et al., 1994) and the ensemble

Kalman filter (EnKF; e.g. Evensen, 1994, 2004; Houtekamer

andMitchell, 1998, 2001) show promising results in convective-

scale radar data assimilation. The 4DVar promises to provide

an initial condition that is consistent with the forecasting

model and can make full use of multiple volume scans from

radar. However, it is not an easy task to implement 4DVar

radar data assimilation, largely because of the need for an

adjoint model, whose coding, maintenance, and develop-

ment are significantly labour intensive. Despite this, a few

studies have looked at 4DVar-based analysis schemes for
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radar data assimilation. Sun and Crook (1997, 1998) devel-

oped a 4DVar system called the variational Doppler radar

analysis system (VDRAS) to assimilate radar reflectivity

and radial velocity with an elastic non-hydrostatic model.

Their results from both simulated and real-data experi-

ments gave evidence of VDRAS improvement in retrieval

of the cloud structure, especially for wind and moisture

fields. Gao et al. (1998) also attempted to develop another

4DVar-based radar assimilation system using the Advanced

Regional Prediction (ARPS) adjoint model. Kawabata et al.

(2011) modified a cloud-resolving non-hydrostatic 4DVar

data assimilation system to assimilate radar reflectivity data

directly, which also forms a 4DVar radar data assimilation

system. Very recently, Wang et al. (2013) and Sun and Wang

(2013) assimilate radar data in the high-resolution Advanced

Research WRF (ARW) for the improvement of short-term

quantitative precipitation forecasting using the 4DVar data

assimilation technique. However, if cold processes were not

taken into account, 4DVar radar data assimilation will show

strong limitations when applied to cold microphysics (Wu

et al. 2000). As such, Caumont et al. (2010) further proposed

an original ‘1D�3DVar method’ to assimilate radar reflec-

tivities, which was used to mitigate difficulties in direct

variational reflectivity assimilation. The method has been

operationally implemented in the AROMEModel at Météo-

France (Wattrelot et al., 2014). On the other hand, the

EnKF has been increasingly applied to the assimilation of

simulated Doppler radar data for modelled convective

storms (Snyder and Zhang, 2003; Zhang et al., 2004a;

Tong and Xue, 2005) and real radar data (Dowell et al.,

2011) because of its simple conceptual formulation and

relative ease of implementation. It is well known that, by

forecasting statistical characteristics, the EnKF can provide

flow-dependent estimates of the background error covar-

iance, which leads to many encouraging results from

EnKF-based radar data assimilation. However, some im-

pact studies using reflectivity assimilation methods have

shown relatively small benefits in comparison with Doppler

velocity data assimilation (Caya et al., 2005; Tong and Xue,

2005). Nevertheless, all studies report positive results with

radar observations and improved forecast quality in a

deterministic-forecasts framework (Aksoy et al., 2010).

Through a comprehensive comparison for storm-scale

radar data assimilation between the 4DVar and the EnKF,

Caya et al. (2005) concluded that, under a perfect-model

assumption, the temporal smoothness constraint character

made the 4DVar generate good, dynamically consistent

analyses almost immediately. By contrast, it took longer

for the EnKF to spin up, but ultimately the flow-dependent

background error covariance utilised by the EnKF enabled

it to perform well. Other studies (e.g. Hunt et al., 2007) also

showed that each of the two data assimilation methods

has its own strengths and weaknesses. In the 4DVar, the

physical model provides a temporal smoothness constraint

and has the ability to simultaneously assimilate the obser-

vation data at multiple times, whereas only a static (not

flow-dependent) background error covariance at the start

of the assimilation window is adopted. By contrast, the EnKF

lacks the temporal smoothness constraint of the 4DVar,

because it is naturally designed to incorporate sequential

information alone, but fortunately, its estimates of the

background error covariance can model flow evolution.

Based on the characteristics of the 4DVar and the EnKF,

major efforts have been devoted to improve atmospheric

data assimilation by coupling 4DVar with EnKF with the

goal of combining their strengths (e.g. Lorenc, 2003; Qiu

et al., 2007; Liu et al., 2008; Tian et al., 2008, 2011; Zhang

et al., 2009; Wang et al., 2010; Cheng et al., 2010). A hybrid

method, referred to as PODEn4DVar, was proposed by

Tian et al. (2008, 2011) based on the proper orthogonal

decomposition (POD) and ensemble forecasting techni-

ques. In the PODEn4DVar, the POD technique is adopted

to transform the original ensemble coordinate system into

an optimal one in the L2 norm (Ly and Tran, 2001), which

contributes greatly to its enhanced assimilation perfor-

mance. Its feasibility and effectiveness were demonstrated

in an idealised model with simulated observations (Tian

and Xie, 2012; Tian et al., 2011). It was found that the

PODEn4DVar outperforms both the 4DVar and the EnKF

under both perfect- and imperfect-model scenarios with

lower computational costs than the EnKF (Tian et al.,

2011). This method has also been successfully applied to

land data assimilation (Tian et al., 2009, 2010) and Tan-

Tracker joint data assimilation (Tian et al., 2014). Further-

more, as the first step to apply the PODEn4DVar in radar

data assimilation, we have already built a three-dimensional

(3D) case of PODEn4DVar-based radar assimilation system

on the WRF model platform (Pan et al., 2012). The results

show that assimilating real radar data with PODEn3DVar

can effectively improve the description for the initial con-

dition, thus achieving significant improvement in predict-

ing precipitation.

In this study, we further report on the development and

assessment of a new radar data assimilation scheme based on

the PODEn4DVar approach [referred to as PODEn4DVar-

based radar data assimilation scheme (PRAS)] and on an

application of this schemewith theWRFmodel to assimilate

real radar reflectivity and radial velocity data from single

Doppler radar for a case of heavy rainfall. The rest of the

paper is organised as follows. In Section 2, we describe our

PODEn4DVar assimilation scheme, including a simple

review of the PODEn4DVar, a description of the observa-

tion operator for the radial velocity, radar reflectivity, and

localisation schemes. In Section 3, the performance of PRAS

is comprehensively evaluated by four groups of numerical

experiments including single-observation experiments,
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comparisons between PRAS and LRAS [i.e. LETKF-based

(Hunt et al., 2007) radar assimilation scheme], cycling

assimilation, and real-data assimilation. Finally, a summary

is given in Section 4.

2. The PODEn4DVar-based radar data

assimilation scheme

2.1. Formulation of the PODEn4DVar

To provide a self-contained description of the radar data-

assimilation scheme (referred to as PRAS) used here, we

first present the formulation on the PODEn4DVar. Some

equations of Tian et al. (2011) and Tian and Xie (2012) are

repeated in this section.

The PODEn4DVar originates from the traditional

4DVar methodology. By minimising the following incre-

mental format of the standard 4DVar cost function J(x?),
one can obtain an optimal increment (x

0

a) of the initial

condition (IC) at the initial time t0:

Jðx0 Þ ¼ 1

2
ðx0 ÞT P�1

b ðx
0 Þþ 1

2
y
0 ðx0 Þ � y

0

obs

� �T
R�1 y

0 ðx0 Þ � y
0

obs

� �

(1)

in which x?�x�xb is the perturbation of the background

field xb at t0, and

y
0

obs ¼

y
0

obs;1

y
0

obs;2

..

.

y
0

obs;S

2

66664

3

77775
; (2)

y
0 ¼ y

0 ðx0 Þ ¼

y
0

1

y
0

2

..

.

y
0

s

2

6664

3

7775
; (3)

y
0

k ¼ ykðxb þ x
0 Þ � ykðxbÞ (4)

y
0

obs;k ¼ yobs;k � ykðxbÞ; (5)

yk ¼ HkðMt0!tk
ðxÞÞ; (6)

and

R ¼

R1 0 � � � 0

0 R2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � RS

2

6664

3

7775
: (7)

Here, the superscript T in (1) stands for transpose, b is the

background value, index k denotes the observation time, S

is the total number of observational times in the assimila-

tion window, Hk is the observation operator, and matrices

Pb and Rk are the background and observational error

covariances, respectively.

According to eqs. (3 and 4), the 4D ensemble of the

observation perturbations (OPs) y?:y
0

1; y
0

2; � � � ; y
0

N are con-

structed by using the non-linear observation operator Hk,

the non-linear forecast model Mt0!tk
, and the initial

conditions x?:x
0

1; x
0

2; � � � ; x
0

N . The POD of this OPs matrix

y? yields

y
0
T y

0 ¼ VK2VT; (8)

in which V matrix is composed of orthogonal vectors and

L2 is corresponding eigenvalues in POD. We define Py the

POD-transformed OPs:

Py ¼ y
0
V: (9)

Assuming nearly linear relationship between the OPs and

the model (or state) perturbations (MPs), we define Px the

POD-transformed MPs:

Px ¼ x
0
V: (10)

The optimal solution x
0

a and its corresponding model

equivalent y
0

a in observation space can be expressed by

the linear combinations of the POD-transformed MPs and

OPs, respectively, as follows:

x
0

a ¼ Pxb; (11)

and

y
0

a ¼ Pyb: (12)

Substituting (11�12) and the ensemble background covar-

iance Pb ¼
PxPT

x

N�1
into (1), the control variable becomes b

instead of x?, so the control variable is expressed explicitly

in the cost function:

JðbÞ ¼ 1

2
ðN � 1Þ

� bT PT
x PT

x

� ��1
Pxð Þ

�1Pxbþ
1

2

� Pyb� y
0

obs

� �T

R�1 Pyb� y
0

obs

� �
(13)

in which PT
x is the transpose of Px. Through simple

calculations (see Tian et al., 2011 for more details), the

solution for x
0

a is simplified into the following form:

x
0

a ¼ Px ðN � 1ÞIþ PT
y R�1Py

h i�1

PT
y R�1y

0

obs: (14)

One unique advantage embedded in the final 4D optimal

solution (14) is that we can obtain the final analytical

results at any time step tk in the assimilation window if we

replace x?(t0) in eq. (10) by x?(tk) and substitute xa(tk),

xb(tk) for xa(t0), xb(tk) in eq. (14), respectively, which thus

facilitates the implementation of data assimilation.
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2.2. Observation operator for PRAS

The observation operator for radial velocity Vr is

Vr ¼ u
x� xr

r
þ v

y� yr

r
þ ðw� VTmÞ

z� zr

r
; (15)

in which (u,v,w) are the Cartesian velocity components

from the model integration, and VTm is the mass-weighted

terminal velocity of the precipitation, which is given by Sun

and Crook (1997, 1998):

VTm ¼ 5:40aq0:125
r : (16)

The variable r is the distance between a model grid point

(x,y,z) and the radar location (xr,yr,zr). The quantity a is a

correction factor defined as

a ¼ P0

P

� 	0:4

; (17)

in whichP is the base state pressure, and P0 is the pressure

at the ground.

The relationship between Z and qr is derived analytically

by assuming the Marshal�Palmer distribution of raindrop

size (Sun and Crook, 1997); the observation operator for

the reflectivity Z is

Z ¼ 43:1þ 17:5 logðqqrÞ; (18)

in which the reflectivity is in units of dBZ, r is air density,

and qr is rainwater mixing ratio.

Consequently, the model-predicted radial velocity Vr,k

and radar reflectivity Zk at the time step tk, which are used

to compare with the observed vector yobs;k ¼ V obs
r;k ;Z

obs
k

� �
in

the 4DVar cost function on the radar coordinates, can be

calculated using the model outputs qr, (u,v,w), and other

model states from eqs. (15 and 18), respectively. Thus, eqs.

(15 and 18) provide a link between the radar observation

variables and the model states, which acts as the observa-

tion operator Hk in eq. (6) in PRAS.

For PRAS, the control variables are the three wind

components (u, v, and w winds), the water vapour mixing

ratios (qv), and the rainwater mixing ratios (qr).

2.3. Localisation schemes

As an ensemble-based assimilation scheme, the localisation

strategy was essential to ameliorate the spurious long-range

correlations resulting from the limited number of ensemble

members (Houtekamer and Mitchell, 1998). In PRAS, we

use the following filter function as the horizontal correla-

tion model (Gaspari and Cohn, 1999):

qh ¼ c0ðdx=dx;0Þ � c0ðdy=dy;0Þ; (19)

and

c0ðrÞ ¼
� 1

4
r5 þ 1

2
r4 þ 5

8
r3 � 5

3
r2 þ 1; 0 � r � 1

1
12

r5 � 1
2
r4 þ 5

8
r3 þ 5

3
r2 � 5rþ 4� 2

3
r�1; 1Br � 2

0; 2Br

;

8
>><

>>:

(20)

in which dx and dy are the zonal and meridional distances

between the observation point and model grid point, dx,0
and dy,0 are zonal and meridional localisation Schur

radii, respectively. Following Zhang et al. (2004b), vertical

localisation is performed using the correlation function,

qvðD logPÞ ¼ 1

1þ 5� ðD logPÞ2
(21)

in which Dlog P is the distance between two vertical levels

in log P space, and P is air pressure.

So, with the localisation scheme, the final PODEn4DVar

analysis solution xa in eq. (14) is formulated using the

Schur product as follows:

xa ¼ xb þ ðqh �qvÞ�fPx ðN � 1ÞIþ PT
y R�1Py

h i�1

PT
y R�1y

0

obsg;

(22)

in which the Schur product of two matrices having the

same dimension is denoted by A�B(C and consists of the

element-wise product such that ai;j ¼ bi;j � ci;j.

3. Evaluation experiments for PRAS

In this section, PRAS will be comprehensively assessed

through a group of single-observation experiments, a group

of comparison experiments between PRAS and LRAS, a

group of cycling assimilation OSSEs and real-data assim-

ilation experiments with the WRF model (Skamarock

et al., 2008).

3.1. WRF configuration

Earlier versions of the WRF model have been widely used

in atmospheric data assimilation (e.g. Barker et al., 2004;

Xiao et al., 2007, 2008) and other applications. The WRF

model version 3.3 in this study is used as the forecasting

model in PRAS.

The experiments were conducted over a grid mesh of

400�400 with a grid spacing of 6 km; 27 layers are present

in the vertical direction. The main physical components

of the WRF model used in our experiments include the

Rapid Radiative Transfer Model (RRTM) long-wave

radiation scheme, the Dudhia shortwave radiation scheme,

the Yonsei University (YSU) PBL scheme, WRF single-

moment six-classes microphysics (WSM6), and the Noah
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LSM land scheme. Particularly, the cumulus parameterisa-

tion scheme is excluded from our experiments. The NCEP

Final (FNL) Operational Model Global Tropospheric

Analyses (http://dss.ucar.edu/datasets/ds083.2/matrix.html)

were used as the first-guess field and boundary conditions

in the experiments.

3.2. Single-observation experiments

In the single-observation experiments, following the experi-

mental design by Wang et al. (2013), assimilation of a single

radar reflectivity observation with PRAS is carried out to

evaluate PRAS performance including in-depth analysis of

background error covariance formed in PRAS.

3.2.1. Experimental design. To guarantee the linear

assumption between the OPs and MPs and incorporate the

radar observations as efficiently as possible, the assimilation

window length is carefully chosen to be 1 hour according

to Wang et al. (2012). A case with a convective system on

08 July 2010 is chosen to perform the single-observation

experiments; correspondingly, the period from 0000UTC 08

to 0100 UTC 08 July 2010 is chosen to be the assimilation

window in PRAS. The same case and assimilation window

are also chosen for the comparison experiments and the real-

data assimilation experiments.

In the single-observation experiments, the analysis time

is 0100 UTC 08 July 2010 (i.e. the end of the assimilation

window), and correspondingly the single-observation is

inserted at the analysis time. The background fields over

the assimilation window are provided by the forecasting

fields that are initialised using the FNL data from 1800

UTC 07 July 2010 with the WRF model (i.e. the back-

ground run introduced in the following), in which the first

6 hours are taken as the spin-up period. Figure 1 shows the

background field on the eleventh model level (approxi-

mately 700 hPa) at the analysis time. Around the location

(30.608N, 116.168E), there exists a convection area (Fig. 1b)

with the corresponding features of cyclonic convergence

and southeast�northwest updraft (Fig. 1a). Then the single

observation is placed on the grid point located at (30.608N,

116.168E) on the eleventh model level, marked by the red

star in Figure 1. The simulated reflectivity for the back-

ground field is 47.15dBZ at the single-observation location.

Similar to the experimental design by Wang et al. (2013), two

experiments are then conducted by assimilating two single-

reflectivity observations of different magnitude. In the first

experiment, the observed reflectivity (57.15 dBZ) is as-

sumed to be larger than the value for the background field

(hereafter SOE1, i.e. the background field underestimated

the convective system). In contrast, we choose a smaller

observed reflectivity (37.15 dBZ, also compared with the

simulated value for the background field) in the second

experiment (hereafter SOE2, i.e. the background field over-

estimated the convective system). Obviously, the two ex-

periments are thus designed to investigate whether PRAS

can effectively intensify (SOE1) or weaken (SOE2) the

convection system fit to the observation by assimilating the

single observed reflectivity.

For PRAS, to form the MPs x? (x
0

1; x
0

2; � � � ; x
0

N ) and OPs

y?(y
0

1; y
0

2; � � � ; y
0

N ), similar to Tian et al. (2014), in each

assimilation cycle, the similar background run and sampling

run are carried out. The background run is used to form the

background fields, and the sampling run is used to form the

ensemble samples by a 4D moving sampling strategy.

Considering the higher complexity and uncertainty for

the convective system, differing slightly from Tian et al.

(2014), two sampling runs are conducted to form more en-

semble samples. More specifically, two 8-hour model integ-

rations from 2000 UTC 07 July to 0400 UTC 08 July 2010

with two different initial conditions are conducted, out-

putting model results every 6 minutes (exactly consistent

with the radar scanning frequency in China). The two

different initial conditions at 2000 UTC 07 2010 July are

the forecasting fields initiated from 1200 UTC 07 July and

Fig. 1. The first guess field at 0010 UTC 08 July 2010. (a) Horizontal wind and vertical velocity (units: m/s) and (b) rainwater-mixing

ratio (units: g/kg). The location of the single observation is marked by the red star.
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0600 UTC 07 July 2010 with FNL data, respectively.

Subsequently, similar to Wang et al. (2010), in the single-

observation experiments, a 4D moving sampling strategy is

adopted for the two 8-hour forecasts, as a result, 142 pairs

of 4D model states samples are formed as follows:

ðx2000UTC;07; x2006UTC;07;:::; x2100UTC;07Þ;
ðx2006UTC;07; x2012UTC;07;:::; x2106UTC;07Þ;
::::::

ðx0300UTC;08; x0306UTC;08;:::; x0400UTC;08Þ:

which indicates there are 714D model states samples pro-

duced by one 8-hour forecast. For the single-observation

experiments, the corresponding simulated-observation vec-

tors are thus obtained by applying the observation operator

to the 142 ensemble model samples [eq. (6)].

Additionally, the innovation vector [y
0

obs in eq. (1)] is also

easily prepared, the algorithm assumes the observation

errors are additive, unbiased, and Gaussian, 1 dBZ are

chosen as the standard deviation of reflectivity observations.

Furthermore, a localisation radius with 16 grid points is

adopted in PRAS (the same localisation radius is adopted in

the following experiments). Consequently, PRAS is imple-

mented to obtain the analysis states. It should be noted here,

a group of sensitivity experiments conducted in advance

demonstrate that PRAS performs best in case of all the

orthogonal vectors with non-zero eigenvalues being re-

tained to perform transformation for Eqs. (8 and 9). As a

result, in all the following experiments, we used all the

orthogonal vectors with non-zero eigenvalues for PRAS.

3.2.2. Results. The increments for the horizontal wind,

vertical velocity, and rainwater mixing ratio on the eleventh

model level from experiment SOE1 are shown in Fig. 2.

Around the single observation, the horizontal wind incre-

ments display obvious cyclonic convergence (Fig. 2a), and

the values of increment for the vertical velocity (Fig. 2a)

and the rainwater mixing ratio (Fig. 2b) are entirely positive.

The cross section of the increment of the rainwater mixing

ratio along with that of the vertical velocity from SOE1

(Fig. 4a) also shows that the rainwater mixing ratio and

updraft increase. These all demonstrate that the convective

system is intensified, which indicates that PRAS can effec-

tively assimilate radar observations. Second, as shown in

Fig. 2, due to the localisation scheme adopted in this study,

non-zero analysis increments are confined to the local patch

with reduced magnitudes at increasing distance from the

observation. As a result, the spurious increments resulting

from the limited number of ensemble members won’t appear

far from the observation; meanwhile, the horizontal correla-

tion model [eq. (20)] also alleviates the sharp discontinuity at

the edge of the local patch (Xu et al., 2011). Finally, the

increments all show an anisotropic distribution with a flow-

dependent pattern, which displays a southeast�northwest
orientation in agreement with that for the simulated con-

vective system (Fig. 1), especially the horizontal wind

increment. It displays cyclonic convergence and corre-

sponds well to the horizontal wind for the background

field, which demonstrates that theBmatrix formed in PRAS

is flow dependent. This means that PRAS is able to spread

observation information spatially in accordance with the

flow-dependent error structure, which is important in

analysis of rapidly evolving systems (Huang et al., 2009),

such as convective systems, hurricanes, and cyclones.

Fig. 2. The increments at 0100 UTC 08 July 2010 on the eleventh model level from experiment SOE1. (a) Wind vector and vertical

velocity (shaded, units: m/s) and (b) rainwater-mixing ratio (units: g/kg). The location of the single observation is marked by the black star.

6 B. ZHANG ET AL.



Figure 3 depicts the horizontal increments from experi-

ment SOE2. As expected, the convective system in this

experiment is weakened by the negative increment of the

rainwater mixing ratio (Fig. 3b). The anticyclonic diver-

gence and downdraft (Fig. 3a) also indicates that the

convection is weakened; the cross section of the increment

of the rainwater mixing ratio along with that of the vertical

velocity from SOE2 (Fig. 4b) shows that the convection is

weakened, as suggested by the decreases in the rainwater

mixing ratio and updraft. The localisation scheme also con-

fines the increments to a local patch with reduced magni-

tudes at increasing distances from the observation. The

increments also display a flow-dependent structure.

In summary, the single-observation experiments demon-

strate that PRAS is able to effectively assimilate the radar

observation and spread the observation information spa-

tially with a flow-dependent pattern in a local patch.

3.3. Comparison OSSEs between PRAS and LRAS

Next, PRAS performance will be further assessed by com-

paring with LRAS through the following OSSEs. OSSEs

are considered the best benchmark tests to assess a data

assimilation methodology or system, because it can provide

both the ‘true’ state and the corresponding ‘observations’.

Three experiments are designed including the control

experiment (CTRL), the LRAS assimilation experiment

(LRASAss), and PRAS assimilation experiment (PRASAss),

which are introduced as follows.

3.3.1. Experimental design. For the comparison experi-

ments, the analysis time is 0100 UTC 08 July 2010, and the

LRAS is also accomplished at the same time step for

comparison with PRAS. The period from 0000 UTC 08 to

0100 UTC 08 July 2010 is chosen to be the assimilation

window for PRASAss, and therefore three simulated-

observation times in the assimilation window are inserted

at 0000 UTC, 0030 UTC, and 0100 UTC 08 July 2010,

respectively. The simulated observations are sampled at the

site of the real observations (Wuhan station).

The CTRL run is initialised using the first guess field at

1800 UTC 07 July 2010 with FNL data and is integrated

for 7 hours, in which the first 6 hours are taken as the spin-

up period.

To conduct the LRASAss and PRASAss experiments,

the assumed ‘true’ atmospheric state over the assimilation

time window should first be provided. To create the

‘observations’ corresponding to the assumed ‘true’ atmo-

spheric state, a random perturbation, which is derived from

the background error covariance of the WRF 3DVar data

assimilation system using an approach similar to the initial

ensemble generating method in Houtekamer and Mitchell

(2005), is added to the background field for CTRL at 2300

UTC 07 July 2010. Then, with the perturbed background

field, an assumed ‘truth run’ is integrated for 2 hours. Thus,

the simulated radar observations at 0000 UTC, 0030 UTC,

and 0100 UTC 08 July 2010 are generated.

For PRASAss, to obtain the MPs and OPs, the same

sampling runs are carried out as for the single-observation

experiments.The 4Dmodel state samples over the assimilation

window can be formed by the 4D moving sampling strategy

similar to that proposed byWang et al. (2010); its correspond-

ing 4D simulated-observation vector over the assimilation

window is thus calculatedby the observationoperator. The 4D

model state samples and simulated-observationvector samples

are obtained using the two 8-hour forecasting by the 4D

moving sampling strategy (Tian et al., 2014).

Fig. 3. As in Fig. 2, but for the increments from the experiment SOE2.
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Additionally, the 4D innovation vector [y
0

obs in eq. (1)]

over the assimilation window is also easily prepared for

LRASAss and PRASAss. The algorithm assumes the obser-

vation errors are additive, unbiased, and Gaussian, 1m/s

and 1 dBZ are chosen as the standard deviation of radial

velocity and reflectivity observations, respectively. Conse-

quently, after implementing the two radar data assimilation

schemes (LRAS and PRAS), the analysis field at 0100 UTC

08 July 2010 can be obtained for LRASAss and PRASAss.

3.3.2. Results. In Fig. 5, comparing with ‘true’ atmo-

spheric state created by ‘truth run’, the vertical profiles of

the root-mean-square errors (RMSEs) of some basic model

variables are shown from the CTRL, LRASAss, and

PRASAss results for the four basic model variables (i.e. u

winds, v winds, w winds, and rainwater mixing ratio). The

RMSEs from both LRASAss and PRASAss assimilation

results are substantially smaller than those from CTRL

(blue squares) at most model levels, especially for u winds

and v winds, which means the two assimilation schemes

can effectively assimilate radar observations to improve

the accuracy of the atmospheric state. Furthermore, the

RMSEs for PRASAss (green circles) are slightly smaller

than those from LRASAss (red triangles), which indicates

that PRAS performance is superior to that of LRAS. In

conclusion, the comparison experiments demonstrate that

PRAS can effectively assimilate the radar observations and

produce analysis results better than (or at least as good as)

LRASAss.

3.4. Cycling assimilation OSSEs of PRAS

The following OSSEs for cycling assimilation are specially

designed to study the feasibility of the PRAS to routinely

assimilate radar data in operational context.

3.4.1. Experimental design. To conduct cycling assimila-

tion OSSEs, the assumed ‘true’ atmospheric state should be

provided. Similar with the above comparison experiments

in Section 3.3, an assumed ‘truth run’ is first integrated for

4 hours with a perturbed background field at 2300 UTC 07

July 2010, thus, the simulated radar observations with an

interval of 30 minutes from 0000 UTC to 0300 UTC 08 July

2010 are generated, which are located at the site of the real

observations (Wuhan station). The length of assimilation

window is also 1 hour, as per the experiments above.

Fig. 4. The south�north vertical section of increment of rainwater-mixing ratio (colour; g/kg) and vertical velocity (contour; m/s) from

(a) SOE1 and (b) SOE2. The vertical sections are along 30.608N.
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Four experiments are then designed including the

CTRL experiment, Cycle-1 experiment, Cycle-2 experiment,

Cycle-3 experiment. The analysis time in all the four

experiments is 0300 UTC 08 July 2010. The experiments

are introduced simply as follows.

The CTRL experiment is initialised using the first guess

field at 1800 UTC 07 July 2010 with FNL data and is

integrated for 9 hours, in which the first 6 hours are taken

as the spin-up period.

The Cycle-1 experiment assimilates the simulated radar

data from 0000 UTC to 0100 UTC 08 July 2010, and then

integrated to 0300 UTC 08 July 2010, which means Cycle-1

just accomplishes one-cycle assimilation.

The Cycle-2 experiment assimilates the simulated radar

data from 0000 UTC to 0100 UTC 08 July 2010 and from

0100 UTC to 0200 UTC 08 July 2010, and thus implements

two-cycle assimilations.

The Cycle-3 experiment assimilates the simulated radar

data from 0000 UTC to 0100 UTC 08 July 2010, from 0100

UTC to 0200 UTC 08 July 2010 and from 0200 UTC to

0300 UTC 08 July 2010, and conducts three-cycle assimila-

tions as a result.

Fig. 5. The vertical profiles of RMSEs in (a) u winds (m/s), (b) v winds (m/s), (c) w winds (m/s) and (d) rainwater-mixing ratio (g/kg)

from the CTRL, LRASAss, and PRASAss results. The results of CTRL, LRASAss and PRASAss analysis field are denoted by blue

squares, red triangles and green circles, respectively.
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3.4.2. Results. In Fig. 6, the vertical profiles of the

RMSEs of some basic model variables are shown from the

CTRL, Cycle-1, Cycle-2 and Cycle-3 results for the four

basic model variables (i.e. u winds, v winds, w winds, and

rainwater mixing ratio). The RMSEs from Cycle-1 (green

circles), Cycle-2 (red triangles) and Cycle-3 (blue squares)

are substantially smaller than those from CTRL (black

plus) at most model levels, which illustrates that the PRAS

can effectively assimilate radar observations to improve

the accuracy of the atmospheric state. Furthermore, the

RMSEs for Cycle-3 are smallest in all experiments, and the

RMSEs for Cycle-2 are smaller than those for Cycle-1,

which demonstrates PRAS can gradually improve the ac-

curacy of the atmospheric state by increasing cycling assi-

milation times.

In conclusion, the cycling assimilation experiments further

demonstrate that PRAS can effectively assimilate the radar

observations and gradually improve the accuracy of the

atmospheric state by increasing cycling assimilation times.

In the following, we will continue to apply PRAS to assi-

milate real radar observations to exploit the potential of

PRAS in real numerical weather prediction (NWP).

3.5. Real-data assimilation of PRAS

3.5.1. Rainfall event. To illustrate PRAS performance in

real-data assimilation, a case was selected that occurred on

July 08 2010 with abrupt heavy rainfall in central China.

The observed 24-hour accumulated precipitation (Fig. 8a)

indicates that the heaviest precipitation occurred in the

eastern Hubei Province, where the centre intensity reached

287mm. The heavy rainfall also occurred at the borders

between Hubei and Hunan Provinces and between Anhui

and Jiangxi Provinces. In most areas, the amount of
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Fig. 6. The vertical profiles of RMSEs in (a) u winds (m/s), (b) v winds (m/s), (c) w winds (m/s) and (d) rainwater-mixing ratio (g/kg)

from the CTRL, Cycle-1, Cycle-2 and Cycle-3 results. The results of CTRL, Cycle-1, Cycle-2 and Cycle-3 analysis field are denoted by
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rainfall exceeded 90mm. The area shown in Fig. 8a is set as

the verification area in this study.

3.5.2. Description of the experiments. To evaluate the

effect of assimilating real radar observations with PRAS on

the accuracy of precipitation forecasting, two experiments,

including the simulated experiment (Exp-Sim) without

radar data assimilation and the assimilated data experi-

ment (PRASAss) with radar data assimilation by PRAS,

are conducted.

The analysis time is 0000 UTC 08 July 2010, and the first

guess field at the analysis time is obtained from the 6-hour

forecasting field initiated from 1800 UTC 07 July 2010, in

which the first 6 hours are taken as the spin-up period.

Then, Exp-Sim is carried out by 24-hour integration from

0000 UTC 08 to 0000 UTC 09 July 2010 without radar

observation assimilation.

For PRASAss, to obtain the MPs and OPs for PRAS,

the same two sampling runs as those in the comparison

OSSEs are also carried out. Consequently, PRAS is

implemented to obtain the analysis state at 0000 UTC 08

July 2010. Finally, with such an analysis field, PRASAss is

completed by a 24-hour WRF model integration from 0000

UTC 08 to 0000 UTC 09 July 2010.

3.5.3. Radar data and preprocessing. Radar data ob-

tained through the China Meteorological Administration

(CMA) Wuhan radar are used in this study. The CMA

Wuhan radar is located in Hubei Province (114.388E,
30.528N) at an altitude of 135.7m. The radar has nine

elevation scans with elevation angles of 0.58, 1.58, 2.48, 3.48,
4.38, 6.08, 9.98, 14.68, and 19.58.
The raw data of Wuhan radar have substantially high

resolution, which is typically updated every 6 minutes or

so with a 250-m resolution for radial velocity and 1-km

resolution for reflectivity. To utilise the radar data effec-

tively in PRAS, several data preprocessing procedures,

including data de-noising (Zhang and Wang, 2006; Jiang

et al., 2009), erasing folded velocity and clutter, data thinn-

ing, and observation error estimation (Tong and Xue, 2005),

are performed; specifically, the reflectivity value is set to

5 dBZ wherever the raw reflectivity data is no greater than

a threshold of 5 dBZ or where the reflectivity is flagged as

missing in the raw data (Lopez and Bauer, 2007; Aksoy

et al., 2009, 2010), then, the radar data processed are

converted to the model grid space for PRAS.

3.5.4. Analysis of sensitivity to the initial ensemble size.

The initial ensemble size and the selection of the initial

ensemble members are important issues in using ensembles

of discrete forecasting to approximate the evolution of an

initial probability distribution in a model (Anderson, 1996),

which directly influence the result of PRAS. If the ensemble

size is large enough to capture the initial probability dis-

tribution, the ensemble size should be selected to be as

small as possible to alleviate the computational costs. To

study the sensitivity of PRAS to the initial ensemble size,

the size of the initial ensemble is set as 100, 120 and 142 in

this paper. Figure 7 shows the increments for the wind and

rainwater-mixing ratio on the eleventh model level. In

general, the increment distribution for the three different

ensemble sizes is similar, except that in the northern area,

the increments for the ensemble size of 100 are a little

different from those for the sizes of 120 and 142. However,

the increments for the ensemble size of 120 are almost

the same as those for the ensemble size of 142, which

indicates that the ensemble size of 120 is enough to

represent the initial probability distribution; hence, it is

reasonable to take 120 as the initial ensemble size in the

following study.

3.5.5. Comparisons of precipitation predictions with and

without radar assimilation. In this section, the predicted

precipitation for Exp-Sim and PRASAss are compared to

assess the performance of PRAS in real-data assimilation.

With the 24-hour accumulated precipitation from 0000

UTC 08 to 0000 UTC 09 July 2010 for the observed data,

the predicted Exp-Sim and PRASAss are shown in Fig. 8.

Comparing these with the observation (Fig. 8a), Exp-Sim

(Fig. 8b) almost failed to predict the heavy rainfall that

occurred in eastern Hubei Province, which is the maximum

precipitation area in this rainfall event. Furthermore, in the

southeastern Hubei Province, Exp-Sim predicted consider-

able spurious heavy rainfall, with the intensity for the

maximum precipitation centre exceeding 240mm. How-

ever, after assimilating the radar observations with PRAS,

PRASAss predicted the heavy rainfall in the eastern Hubei

Province well (Fig. 8c), which is very close to the observed

precipitation, except that the location is slightly south-

easterly. At the same time, PRASAss eliminated the spurious

heavy rainfall predicted by Exp-Sim in southeastern Hubei

Province. PRASAss had some ability to predict the heavy

rainfall at the border between Hubei and Hunan Provinces

(Fig. 8a), but Exp-Sim nearly failed to predict it. The heavy

rainfall at the border between Anhui and Jiangxi Provinces

(Fig. 8a) was not well predicted by either experiment, but

PRASAss eliminated the spurious heavy rainfall predicted

by Exp-Sim in northeastern Jiangxi Province.

To objectively and quantitatively verify the precipitation

forecast, a Structure, Amplitude, and Location (SAL) quan-

titative assessment method proposed by Wernli et al.

(2008) is adopted. The precipitation forecast is verified
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according to the structure, the amplitude, and the location.

The smaller the absolute values of S, A, and L are, the

better is the forecast. The SAL verification results for Exp-

Sim and PRASAss are shown in Fig. 9.

The L represents the effect of the precipitation location

on the forecast and is the most important parameter in

SAL. Obviously, the value of L for PRASAss is smaller

than that for Exp-Sim, which indicates that the ability to

forecast the location of the rainband can be improved

through assimilating the radar observations with PRAS.

The negative value of A indicates that the predicted pre-

cipitation for Exp-Sim and PRASAss both are weaker than

the observed precipitation; the absolute value of A for

PRASAss is slightly larger than that for Exp-Sim, which

means the intensity of the precipitation predicted by Exp-

Sim is stronger than that predicted by PRASAss. We may

speculate that this is due to the fact that more spurious

precipitation patterns are predicted by Exp-Sim. The posi-

tive value of S for Exp-Sim indicates that the scale of the

predicted precipitation is greater than that of the observed

precipitation, and the negative value of S for PRASAss

indicates that the scale of the predicted precipitation is

smaller than that of the observed precipitation. The pre-

dicted precipitation for PRASAss mainly concentrates at

the border between Hubei and Anhui provinces.

Obviously, the predicted precipitation for PRASAss is

closer to the observation than is that for Exp-Sim, indi-

cating that PRAS can assimilate real radar data to improve

precipitation forecasting.

3.5.6. Effects of radar data assimilation on model

initialisation. Doppler radar observations with rich infor-

mation about the 3D structures of mesoscale convection

are a major data source for initial conditions in high-

resolution NWP of severe weather events. The improve-

ments in precipitation forecasting discussed above are the

result of the change in the initial condition with PRAS.

Therefore, the impact of radar assimilation with PRAS on

the initial field will be examined in what follows.

The analysis increments of both the dynamical and

microphysical structures at 0000 UTC 08 July 2010 are

illustrated in Figs. 10 and 11. In the horizontal direc-

tion (Fig. 10), in the heavy rainfall area in eastern Hubei

Province, on the eighth model level (s�0.85, approxi-

mately 850 hPa), the intensified northerly wind in the north

and the intensified southerly wind in the south strengthen

wind convergence. Meanwhile, the vertical velocity and the

rainwater-mixing ratio are also intensified in the vertical

direction (Fig. 11). The increments show that the northerly

winds north of 30.208N and the southerly winds south of

30.208N are significantly enhanced below 750hPa (Fig. 11a),

leading to intensification of the low-level convergence. Figure

10b shows that the rainwater-mixing ratio is significantly

Fig. 7. The increments for vertical velocity and rainwater-mixing ratio on the eleventh model level: (a, b and c) vertical velocity (m/s) for

the sizes 100, 120 and 142, respectively; (d, e, and f) rainwater-mixing ratio (g/kg) for the sizes 100, 120 and 142, respectively. The red star

represents the location of the Doppler radar in Wuhan.
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Fig. 9. The SAL verification of 24-hour forecast precipitation for Exp-Sim and PRASAss.

Fig. 8. The 24-hour accumulated precipitation for (a) the observed (b) Exp-Sim and (c) PRASAss from 0000 UTC 08 to 0000 UTC 09

July 2010 (units: mm); the red star represents the location of the Doppler radar in Wuhan.
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enhanced, especially in the low-level atmosphere, and the

vertical velocity is also enhanced from 900 to 250 hPa,

which increase the precipitation intensity; this explains why

the heavy rainfall in eastern Hubei Province was improved

by PRASAss. At the same time, in southeastern Hubei

Province (Fig. 10), the horizontal wind increment intensi-

fies wind divergence, and the vertical velocity and rain-

water-mixing ratio are also weakened in the vertical

direction (not shown), which eliminated the spurious heavy

rainfall predicted by Exp-Sim (Fig. 8b). At the border

Fig. 10. The increments for wind field and rainwater-mixing ratio on the eighth model level. (a) Horizontal wind (vector, units: m/s) and

vertical velocity (shaded, units: m/s); (b) rainwater-mixing ratio (units: g/kg). The black star represents the location of the Doppler radar in

Wuhan.

Fig. 11. The south�north vertical section of increment along 116.28E. (a) V wind (m/s). (b) rainwater-mixing ratio (colour; g/kg) and

vertical velocity (contour; m/s).
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between Hubei and Hunan provinces, the predicted pre-

cipitation is also strengthened by the wind convergence

resulting from the horizontal wind increment (Fig. 10).

However, at the border between Anhui and Jiangxi pro-

vinces, the horizontal wind, vertical velocity, and rainwater-

mixing ratio all change little, so the predicted precipitation

is also hardly improved. Meanwhile, the difference between

assimilated observed reflectivity and corresponding back-

ground reflectivity at 2.48 scan surface is shown in Fig. 12.

Obviously, the background field overestimates the con-

vective intensity in the south of 30.508N. Logically, the

convective intensity would be weakened if radar data could

be assimilated successfully. In Figs. 10 and 11, the corres-

ponding analysis increments in the south of 30.508N
indicates that the convective intensity is weakened, which

further demonstrates the PRAS can efficiently incorporate

radar data information.

In summary, assimilating radar observations with PRAS

can properly add mesoscale information on the initial field

to improve the accuracy of heavy rainfall forecasting.

4. Summary and concluding remarks

The standard 4DVar technique is increasingly used for

synoptic and global-scale atmospheric data assimilation at

operational NWP centres around the world due to the two

following attractive features: (1) the physical model can

provide a temporal smoothness constraint, and (2) it has

the ability to simultaneously assimilate the observation

data at multiple times in an assimilation window. Unfortu-

nately, the need for an adjoint model in 4DVar makes it

considerably difficult to implement 4DVar-based radar

data assimilation for improving model initialisation.

Furthermore, the adoption of a static background error

covariance in the standard 4DVar potentially degrades its

assimilation performance. To address this issue, a hybrid

method, namely the POD-based ensemble 4-D variational

assimilation (PODEn4DVar) method, was proposed by

Tian et al. (2008, 2011) based on ensemble forecasting and

the POD techniques. Its robust performance and significant

strengths (compared with the usual EnKF, 4DVar, and

several other popular ensemble-based assimilation methods)

have been demonstrated and highlighted by idealised

models through observing system simulation experiments

(OSSEs) (Tian et al., 2008, 2011; Tian and Xie, 2012). In

this study, we further utilise this approach to build a radar

data assimilation scheme (PRAS) for exploiting its wider

applications.

To assess the ability of PRAS to assimilate radar obser-

vations, the single-observation experiments, the OSSEs, and

the real-data assimilation experiments were carried out. The

results from the single-observation experiments show that

PRAS is effective in assimilating radar observations and that

the background error covariance formed in PRAS is flow

dependent, demonstrating the validity of PRAS in assim-

ilating radar observations. In the Comparison OSSEs, the

performance of PRAS was compared with of the LETKF,

and the results demonstrate that PRAS can assimilate radar

observations at least as good LETKF can. In the cycling

assimilation OSSEs, the results demonstrate the PRAS can

effectively assimilate the radar observations and gradually

improve the accuracy of the atmospheric state by increasing

cycling assimilation times. In the real-data assimilation experi-

ments, a heavy rainfall case over central China was selected to

assess PRAS; after the radar observations fromWuhan station

were assimilated by PRAS, the initial dynamic and micro-

physical fields were improved so as to improve the accuracy of

heavy rain forecasting. These encouraging results presented

here show that PRAS provides a promising tool for radar data

assimilation.

As the radar observations in this study came from single

radar, which only covers a limited area, the multiple radar

observations are expected to be assimilated in PRAS; at the

same time, the other observations, such as satellite ob-

servations that cover a larger space, are also expected to be

assimilated in PRAS in the future.
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