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Abstract    The Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimilation
method (POD4DEnVar) was proposed to combine the strengths of EnKF (i.e., the ensemble Kalman filter) and 4DVar
assimilation methods. Recently, a POD4DEnVar-based radar data assimilation scheme (PRAS) was built and its effectiveness
was demonstrated. POD4DEnVar is based on the assumption of a linear relationship between the model perturbations (MPs)
and the observation perturbations (OPs); however, this assumption is likely to be destroyed by the highly non-linear forecast
model or observation operator. To address this issue, using the Gauss-Newton iterative method, the nonlinear least squares
enhanced POD4DEnVar algorithm (referred to as NLS-4DVar) was proposed. Naturally, the PRAS was upgraded to form the
NLS-4DVar-based radar data assimilation scheme (NRAS). To evaluate the performance of NRAS against PRAS, observing
system simulation experiments (OSSEs) were conducted to assimilate reflectivity and radial velocity individually, with one,
two, and three iterations. The results demonstrated that the NRAS outperformed PRAS in improving the initial condition and
the forecasting of model variables and rainfall. The NRAS, with a smaller number of iterations, can yield a convergent result.
In contrast to the situation when assimilating radial velocity, the advantages of NRAS over PRAS were more obvious when
assimilating reflectivity.
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1.    Introduction
Doppler radar observations have high temporal and spatial
resolutions, and the radial velocity and reflectivity obtained
from Doppler radars contain important convective scale in-
formation on the wind and hydrometeors (Weng et al., 2011;
Zhang, 2011; Zhang et al., 2011). As high-resolution simula-
tions are developed for numerical weather prediction (NWP),
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assimilating radar data is essential for improving the capacity
of NWP (Choi et al., 2013).
There are two main methods to effectively assimilate radar

data: the variational and sequential methods. In variational
methods, three-dimensional variational (3DVar) analysis
was first used to assimilate radar data with a 3DVar system,
Doppler radar data were assimilated successfully to initiate
the convective system and improve short-range rainfall fore-
casts (Gao et al., 2004; Hu et al., 2006a, 2006b; Xiao et al.,
2005, 2007; Xiao and Sun, 2007; Sugimoto et al., 2009; Kain

http://earth.scichina.com
http://link.springer.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11430-015-0271-4&domain=pdf&date_stamp=2017-01-05
https://doi.org/10.1007/s11430-015-0271-4
https://doi.org/10.1007/s11430-015-0271-4


et al., 2010), and the Weather Research and Forecast (WRF)
3DVar radar data assimilation system was also implemented
operationally in the Korea Meteorological Administration
(KMA; Xiao et al., 2008). Recently, Wang et al. (2013a)
further upgraded the 3DVar radar data assimilation scheme
by adding the assimilation of in-cloud humidity. Although
3DVar can effectively assimilate radar data, it neglects the
time tendency of atmospheric flow and cannot assimilate
radar data distributed dynamically over time (Sun and Wang,
2013). Additionally, 3DVar does not include the effects
of “errors of the day”, the background error covariance is
assumed to be static, homogeneous, and isotropic (Courtier,
2007; Parrish and Derber, 1992; Lorenc, 2003), which is
always inappropriate in the analysis of fast-evolving convec-
tive scale systems.
While the four-dimensional variational (4DVar) technique

uses a forecast model as a constraint and can assimilate asyn-
optic observations in time, the time tendency terms are also
included (Sun and Wang, 2013). In addition, 4DVar can im-
plicitly evolve background error covariance over an assimi-
lation window and so reflect the flow-dependent nature of the
analysis increments (Huang et al., 2009). For radar data as-
similation, Sun and Wang (2013) compared the WRF 4DVar
systemwith its corresponding 3DVar system and an enhanced
3DVar system (Wang H L et al., 2013a). The results indicated
that 4DVar substantially improves the quantitative precipita-
tion forecast (QPF) skill over the standard 3DVar and the en-
hanced 3DVar. Recently, assimilating radar data with 4DVar
has shown the potential for improving the QPF of mesoscale
convective systems (Kawabata et al., 2007, 2011; Wang et al.,
2013b; Sun andWang, 2013; Choi et al., 2013). However, the
traditional 4DVar method is an adjoint-based method, which
faces a range of challenges arising from coding, maintaining,
and updating the adjoint model of the forecast model. In ad-
dition, the background error covariance at the beginning of
the assimilation window is assumed to be static for 4DVar
(Kleist and Ide, 2015a, 2015b), which leads to its poor as-
similation performance (Beck and Ehrendorfer, 2005; Cheng
et al., 2010; Fairbairn et al., 2014).
For sequential methods, since the ensemble Kalman filter

(EnKF) technique was introduced by Evensen (1994), it has
received much attention due to its simple conceptual formu-
lation and relative ease of implementation (Evensen, 2003).
It uses ensemble forecasts to estimate flow-dependent back-
ground error covariance, including cross-covariances among
variables, and can effectively extract information contained
in radar data, such that many encouraging results have been
obtained from EnKF-based radar data assimilation (e.g., Sny-
der and Zhang, 2003; Dowell et al, 2004; Tong and Xue,
2005; Aksoy et al., 2009, 2010; Jung et al., 2008, 2010;
Xue et al., 2010; Snook et al., 2011; Weng and Zhang, 2012;
Munsell and Zhang, 2014). However, EnKF lacks the tempo-
ral smoothness constraint and evolution of nonlinearities for

forecast errors over the assimilation window in 4DVar (Caya
et al., 2005).
Generally, 4DVar and EnKF can both assimilate radar data

well due to their respective advantages (Caya et al., 2005).
In an attempt to combine the strengths of these two main
assimilation methods, so-called 4DEnVar methods (Lorenc,
2003, 2013; Lorenc et al., 2015; Desroziers et al., 2014; Fair-
bairn et al., 2014; Poterjoy and Zhang, 2015) have been pro-
posed (e.g., Qiu et al., 2007; Liu et al., 2008, 2009; Tian et
al., 2008, 2011; Wang et al., 2010). In 4DEnVar, the 4D en-
semble of model trajectories is used to calculate perturbations
and hence evolve background error covariance flow-depen-
dently instead of using the tangent linear and adjoint models
in 4DVar (Fairbairn et al., 2014; Buehner et al., 2013), and
the localization of background error covariance in observa-
tion space in comparison to EnKF is avoided, while highly
parallel computing can be easily performed (Desroziers et al.,
2014). Recently, many applications based on these 4DEn-
Var methods have shown its potential in different fields (e.g.,
Wang et al., 2010; Tian et al., 2014; Zhang et al., 2015). Of
these, the proper orthogonal decomposition (POD)-based en-
semble 4DVar assimilationmethod (referred to as POD4DEn-
Var, Tian et al., 2008, 2011) was proposed based on the POD
and ensemble forecast techniques. For POD4DEnVar, the
POD transformation is conducted in the observation pertur-
bation (OP) space rather than in the model perturbation (MP)
space, and the MPs are transformed in accordance with the
POD transformation to the OP space. Thus, the computa-
tional cost can be substantially reduced (Tian et al., 2011).
Meanwhile, the transformedMPs could guarantee the orthog-
onality (and thus independence) of their corresponding OPs
(Tian et al., 2011), which is more conducive to obtaining
good assimilation results. Furthermore, Zhang et al. (2015)
used this approach to build a POD4DEnVar-based radar data
assimilation scheme (PRAS), which significantly improved
the accuracy of analysis fields and rainfall forecast. How-
ever, POD4DEnVar assumes a linear relationship between
the MPs and OPs (Tian and Feng, 2015). As Tian and Feng
(2015) discussed, such a linear assumption is inevitably chal-
lenged when the forecast model or observation operator is
strongly non-linear. For example, the length of the assimi-
lation window in PRAS has to be chosen carefully to guaran-
tee the linear assumption between the MPs and OPs (Zhang
et al., 2015). Nevertheless, PRAS inevitably suffers from
the linear assumption. To solve the nonlinear problems in
data assimilation, the incremental 4D-Var (Courtier et al.,
1994) uses outer loops to update the nonlinear evolution of
the trajectory, while the incremental cost function is mini-
mized in the inner loops (Andersson et al., 2005; Huang et
al., 2009). In EnKF, to solve the nonlinear problems, Kalnay
and Yang (2008, 2010) used the no-cost smoothing and ‘run-
ning in place’ methods, and the observations were assimilated
more than once during spin-up to maximize the initial extrac-
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tion of information (Kalnay and Yang, 2008, 2010; Yang et
al., 2012; Wang S Z et al., 2013). Sakov et al. (2012) pro-
posed an iterative EnKF, while Bocquet and Sakov (2014)
proposed an iterative ensemble Kalman smoother, in which
the Gauss-Newton schemes were used to minimize the cost
function iteratively. Similarly, with the Gauss-Newton iter-
ative method, Tian and Feng (2015) proposed a nonlinear
least squares enhanced POD-4DVar algorithm (NLS-4DVar)
to solve the nonlinear problems in POD4DEnVar. The results
demonstrated that NLS-4DVar performed moderately better
than POD4DEnVar for highly non-linear cases.
Because of the advantages of NLS-4DVar over the

POD4DEnVar, naturally, we further upgraded PRAS to a
new radar data assimilation scheme based on the proposed
NLS-4DVar approach (NRAS). In this study, observing
system simulation experiments (OSSEs) were designed to
evaluate the assimilation performance of NRAS against
PRAS.

2.    Methodology

2.1    Formulation of the NLS-4DVar

As an enhanced version of the POD4DEnVar (Tian et al.,
2008, 2011), NLS-4DVar also prepares an ensemble of ini-
tial fields (xj, j=1, ..., N, N is the number of ensemble mem-
bers) to represent the uncertainty of the background field xb
at an initial time of t1. Further, NLS-4DVar assumes the
analysis increment x a linearly embeds in the MPs’ space
(x x x ,j j b= j=1, ..., N); then, x a can be expressed as fol-
lows:

Px ,a x= (1)

where P x x x( , , , )x N1 2= , ( , , , ) .N1 2
T=

Substituting eq. (1) and the ensemble background error co-
variance B=PxPxT/(N−1) (Evensen, 2004) into the following
incremental form of the 4DVar cost function
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the control variable becomes β=(β1, β2, ..., βN)T instead of x as
follows:
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Here, T and b represent the matrix transpose and the back-
ground field, respectively. tk indicates the kth observation
time, s is the total observation time steps in the assimilation
window. Hk, Mt tk1

, B, and Rk represent the observation op-
erator, the forecast model, the background error covariance,
and the observation error covariance, respectively.
Through the appropriate mathematical calculations (see

Tian and Feng (2015) for more details), eq. (3) can be rewrit-
ten as the following nonlinear least squares formulation:
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Therefore, we can obtain the iterative NLS-4DVar analysis
solution xa

i, 1+ (i=1, 2, ..., imax), imax is the maximum iteration
number, the maximum iteration number is determined when
the value of the 4DVar cost function is no longer reduced) af-
ter the localization process (Tian and Feng, 2015), as follows:
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where µ PPx y stands for the Schür product of matrices μ
and PPx y of the same dimension, µ PPx y stands for the Schür
product of matrices μ and PPx y of the same dimension.
The elements of the matrix μ can be calculated according

to the formula:
µ C d d C d d( / ) ( / ),i j h i j h v i j v, 0 , , ,0 0 , , ,0= (10)

where the filtering function C0 is defined by (Gaspari and
Cohn, 1999), below:
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dh, i, j and dv, i, j represent the horizontal distance and vertical
distance between the observation point and model grid point;
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dh, 0 and dv, 0 are the horizontal and vertical localization radii.
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Generally, the NLS-4DVar is similar to the incremental
4D-Var framework (Courtier et al., 1994). As discussed in
Tian and Feng (2015), the non-linear forecast model and the
non-linear observation operator are used to update xL ( )k a

i, ,
which is similar to the outer loops in the incremental 4D-Var
framework. Once xL ( )k a

i, is updated, x a
i, is then updated

according to eq. (5). However, the NLS-4DVar does not
require the inner loops in the incremental 4D-Var. Since the
value of xL ( )k a

i, is calculated using the non-linear forecast
model and the non-linear observation operator directly, the
non-linearity of the original cost function is largely guaran-
teed. Correspondingly, NLS-4DVar promises to handle the
nonlinear data assimilation.
Note that the POD4DEnVar analysis solution is only the

first iteration (i.e., imax=1) of the proposed NLS-4DVar se-
quence (Tian and Feng, 2015). In addition, if the forecast
model Mt tk1

and observation operatorHk are linear, the NLS-
4DVar is equivalent to the POD4DEnVar (Tian and Feng,
2015).

2.2    Observation operator for the NRAS

According to Sun and Crook (1997, 1998), the observation
operators for the radial velocity Vr and the reflectivity Z are

as follows:
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where (u, v, w) are the zonal wind, meridional wind, and ver-
tical velocity, respectively, the variable r is the distance be-
tween the observation location (x, y, z) and the radar location
(xr, yr, zr). VTm, ρ, and qr represent the mass-weighted termi-
nal velocity of the precipitation, air density, and the rainwater
mixing ratio. VTm and the correction factor a are calculated as
follows:
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whereP and P0 are the base state pressure and the pressure at
the ground surface.
Based on the NLS-4DVar method, the radial velocity and

the reflectivity observation operators are introduced, and
then NRAS can be formed. In contrast to NRAS, the PRAS
is based on the POD4DEnVar, and the solution of PRAS is
equivalent to the first iteration solution of the NRAS.
For the NRAS and the PRAS, the zonal wind, the merid-

ional wind, the vertical velocity, the perturbation potential
temperature, the perturbation pressure, the water vapor mix-
ing ratio, and the rainwater mixing ratio are control variables.

3.    Observing system simulation experiments
(OSSEs)
By using OSSEs, a data assimilation system can be investi-
gated comprehensively (Wang et al., 2008; Liu et al., 2009).
The OSSEs were designed to evaluate the assimilation per-
formance of the NRAS against the PRAS.

3.1    Description of the experiments

The WRF model was the forecast model used in the OSSEs.
In the WRF model, the grid spacing is 6 km with a grid mesh
of 400 × 400 in the horizontal direction, and 27 layers in
the vertical direction. The Rapid Radiative Transfer Model
(RRTM) long-wave radiation scheme, Dudhia shortwave ra-
diation scheme, Yonsei University (YSU) planetary bound-
ary layer (PBL) scheme, WRF single-moment six-classes mi-
crophysics (WSM6) scheme, and Noah land surface model
(LSM) land scheme were chosen, with the cumulus parame-
terization scheme excluded.
Because the reflectivity observation operator is non-linear,

while the radial velocity observation operator is linear, to
clearly investigate the assimilation performance of the NRAS
against the PRAS for different radar data, reflectivity and
radial velocity were assimilated individually in the experi-
ments. According to Wang et al. (2012) and Zhang et al.

Zhang B, et al.   Sci China Earth Sci   March (2017)  Vol. 60  No. 3 481



(2015), a 1-hour assimilation window is appropriate and was
therefore used here. Because radar data is updated every six
minutes in China, the radar data over the assimilation window
were assimilated every six minutes.
In the OSSEs, the assumed “true” atmospheric state was

initially produced as a reference. To remove the influence
of the spin-up, the “true” atmospheric state was initiated
from six hours prior to the time of analysis at 0000 UTC 08
July 2010 with 1° × 1° National Centers for Environmental
Prediction (NCEP) Final (FNL) Global Tropospheric Analy-
ses. Then the simulated radar observations at the site of the
real observations (Wuhan station) were sampled from the
assumed “true” atmospheric state. Wuhan radar station is
located in Hubei Province (114.38°E, 30.52°N) at an altitude
of 135.7 m, and has nine elevation scans, with elevation
angles of 0.5°, 1.5°, 2.4°, 3.4°, 4.3°, 6.0°, 9.9°, 14.6°, and
19.5°. The radar observation errors were assumed to be
additive, unbiased, and Gaussian. The standard deviations
of radial velocity and reflectivity observations were 1 m
s−1 and 1 dBZ, respectively. A CTL experiment was then
conducted to obtain a sizeable different background field
from the “true” atmospheric state. The background field
was initiated 12 hours prior to the time of analysis with
the NCEP FNL data. The MPs x x x( , , , )N1 2 and OPs
y y y( , , , )N1 2 were formed as in Zhang et al. (2015), with
two sampling runs conducted, which were then used to form
the ensemble samples using a 4D moving sampling strategy
(Wang et al., 2010; Tian et al., 2014).
Once the preparations described above were completed,

the OSSEs was conducted to investigate the performance
of the NRAS in comparison to the PRAS. Three groups
of experiments were designed for assimilating reflectivity
(radial velocity), and are referred to as NLS1-R (NLS1-V),
NLS2-R (NLS2-V), and NLS3-R (NLS3-V). For the NLS1-R
(NLS1-V) experiment, the NRAS conducted only one itera-
tion (i.e., imax=1) to assimilate reflectivity (radial velocity), in
which the NRAS was equivalent to the PRAS. For NLS2-R

(NLS2-V) and NLS3-R (NLS3-V), the NRAS conducted
two or three iterations (i.e., imax=2 or imax=3).

3.2    Effects of radar data assimilation by the NRAS on
model initialization

Because the aim of the PRAS and the NRAS is to improve the
accuracy of the initial condition, the analysis field at the time
of analysis was first compared with the “true” atmospheric
state to evaluate the assimilation performance of the NRAS
against the PRAS.
First, the radar reflectivity on the eighth model level

(σ=0.85 approximately 850 hPa) was compared, as shown
in Figures 1 and 2. Figure 1(a) shows the “true” reflec-
tivity, with strong reflectivity in the area of 29°–31°N,
115°–117.5°E. Compared with the “true” reflectivity, the
background reflectivity from the control (CTL) experiment
(Figure 1(b)) generally reproduced a similar pattern, but there
were obvious differences. For example, the CTL experiment
failed to simulate the reflectivity between Hubei and Anhui
provinces, which corresponded to the gap in the area of
30°–31°N, 115°–116°E (black rectangle) in Figure 1(b).
The simulated reflectivity at the eighth model level in the

assimilation experiments is shown in Figure 2. Compared
with Figure 1(b), the simulated reflectivity (Figure 2a‒c) af-
ter assimilating reflectivity was substantially improved, espe-
cially in the area of 30°–31°N, 115°–116°E (black rectangle).
In the area of 30°–31°N, 115°–116°E (black rectangle), the
northern reflectivity was weakened and the southern reflec-
tivity was intensified, which were closer to the “truth” (Fig-
ure 1a). This demonstrated that the NRAS can effectively
assimilate reflectivity. Compared with NLS1-R (Figure 2a),
NLS2-R (Figure 2b) further improved the simulated reflectiv-
ity in the area of 30°–31°N, 115°–116°E, which indicated that
the NRAS with two iterations outperformed PRAS in assim-
ilating reflectivity. NLS3-R produced a further improvement
over  NLS2-R.   The  result indicated  the  NRAS  can grad-

Figure 1            The radar reflectivity (dBZ) at the eighth model level at the time of analysis for (a) the “truth” and (b) the CTL experiment. The black star represents
the location of the Doppler radar in Wuhan.
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ually improve the simulated reflectivity by increasing the
iterations. Further improvements in NLS3-R became fewer,
which indicated that the NRAS with two iterations could
yield a convergent solution. After assimilating radial ve-
locity, the simulated reflectivity (Figure 2d‒f) was also
improved. Compared with the improvements made by as-
similating reflectivity (Figure 2a‒c), the improvements made
by assimilating radial velocity (Figure 2d‒f)) were much
smaller. This may be because assimilating reflectivity has a
direct impact on the simulated reflectivity, but assimilating
radial velocity can only impact the simulated reflectivity in-
directly through cross-covariance. Unlike the improvement
made when assimilating reflectivity, the further improvement
was much smaller when the iterations were increased when
assimilating radial velocity. As shown in Figures 2d‒f), the
improvements made in NLS1-V, NLS2-V, and NLS3-V were
almost the same. This may be because the radial velocity ob-
servation operator is linear, while the reflectivity observation
operator is non-linear; the nonlinearity impact was weaker

when assimilating radial velocity than when assimilating re-
flectivity. According to the theory of NRAS, the advantages
of NRAS over PRAS are fewer when assimilating radial
velocity than when assimilating reflectivity.
Furthermore, the root-mean-square errors (RMSEs) at the

time of analysis for six basic model variables were compared,
as shown in Table 1. After assimilating either reflectivity
or radial velocity with NRAS, compared with the CTL ex-
periment, the RMSEs for all variables gradually decreased
when the iterations increased, the decreasing amplitude be-
came smaller when the iterations were increased. This result
indicated that NRAS outperformed PRAS in assimilating the
radar data. It was also found that assimilating reflectivity led
to a larger improvement in the vertical velocity, the perturba-
tion potential temperature, the water vapor mixing ratio, and
the rainwater mixing ratio than the assimilating radial veloc-
ity, while assimilating radial velocity led to a larger improve-
ment in the zonal wind, meridional wind, and perturbation
pressure than assimilating reflectivity, which  indicated  that

Figure 2            The radar reflectivity (dBZ) at the eighth model level at the time of analysis for (a) NLS1-R, (b) NLS2-R, (c) NLS3-R, (d) NLS1-V, (e) NLS2-V,
and (f) NLS3-V. The black star represents the location of the Doppler radar in Wuhan.

Table 1               The RMSEs for U, V, W, T, P, QV, and QR at the time of analysis for the CTL, NLS1-R, NLS2-R, NLS3-R, NLS1-V, NLS2-V, and NLS3-V
experimentsa)

U (m s−1) V (m s−1) W (m s−1) T (K) P (Pa) QV (g kg−1) QR (g kg−1)
CTL 3.000 3.127 0.397 1.418 40.139 0. 671 0. 257

NLS1-R 2.943 3.060 0.379 1.401 39.965 0. 659 0. 238
NLS2-R 2.916 3.038 0.373 1.394 39.803 0. 653 0. 231
NLS3-R 2.909 3.032 0.371 1.393 39.758 0. 652 0. 230
NLS1-V 2.917 3.042 0.380 1.403 39.613 0. 663 0. 244
NLS2-V 2.885 3.011 0.376 1.398 39.345 0. 659 0. 240
NLS3-V 2.877 3.003 0.374 1.396 39.264 0. 658 0. 239

a) U, zonal wind; V, meridional wind; W, vertical velocity; T, perturbation potential temperature; P, perturbation pressure; QV, water vapor mixing ratio; QR, rainwater mixing
ratio
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the two types of radar data have different impacts on different
variables.
The RMSEs in the vertical direction for four model vari-

ables (zonal wind, meridional wind, vertical velocity, and
rainwater-mixing ratio) were further compared in Figures 3
and 4 to evaluate NRAS against PRAS. After assimilating ei-
ther reflectivity or radial velocity (Figures 3 and 4), compared
with the CTL experiment, NLS1-R andNLS1-V,NLS2-R and
NLS2-V, and NLS3-R and NLS3-V all reduced the RMSEs
at most model layers. NLS2-R (NLS2-V) further reduced the
RMSEs over NLS1-R (NLS1-V). When NLS3-R (NLS3-V)
was compared with NLS2-R (NLS2-V), the RMSEswere fur-
ther decreased. This result also demonstrated that NRAS
could make further improvements with more iterations com-
pared with PRAS. The decreasing amplitude became smaller
in NLS3-R (NLS3-V), which indicated that a limited number
of iterations (two iterations in this study) can yield a conver-
gent result. When comparing the improvement made by as-
similating reflectivity with that by assimilating radial veloc-
ity (Figures 3 and 4), the largest difference was found in the
rainwater mixing ratio, with the difference mainly occurring
in the lower layers. Assimilating reflectivity led to a larger
improvement in the rainwater mixing ratio than assimilating
radial velocity, which was consistent with the results shown

in Table 1. According to the reflectivity observation opera-
tor (eq. (7)), reflectivity is directly related to the rainwater
mixing ratio; thus, assimilating reflectivity naturally can lead
to larger improvements in the rainwater mixing ratio than as-
similating radial velocity.
In summary, NRAS with iterations greater than one out-

performed PRAS in improving initial condition. When in-
creasing the iterations, the NRAS can gradually improve ini-
tial condition. These improvements will become fewer with
increased iterations, and a limited number of iterations can
yield a convergent result. Because the observation operators
for reflectivity and radial velocity are nonlinear and linear,
respectively, the nonlinearity impacts will be stronger when
assimilating reflectivity. Therefore, by increasing the itera-
tions, the improvements made when assimilating reflectivity
were larger than those made when assimilating radial veloc-
ity. In addition, assimilating reflectivity and radial velocity
had different impacts on model variables. In particular, be-
cause reflectivity is directly related to the rainwater mixing
ratio, assimilating reflectivity led to larger improvements in
the rainwater mixing ratio than assimilating radial velocity.

3.3    Results of the forecasts

To comprehensively evaluate the performance of the NRAS

Figure 3            The vertical profiles of the RMSEs in (a) zonal wind (m s−1), (b) meridional wind (m s−1), (c) vertical velocity (m s−1), and (d) rainwater-mixing ratio
(g kg−1) from the CTL, NLS1-R, NLS2-R, and NLS3-R at the time of analysis.
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Figure 4            The vertical profiles of the RMSEs in (a) zonal wind (m s−1), (b) meridional wind (m s−1), (c) vertical velocity (m s−1), and (d) rainwater-mixing ratio
(g kg−1) from the CTL, NLS1-V, NLS2-V, and NLS3-V at the time of analysis.

against the PRAS, the forecasts for four model variables
(zonal wind, meridional wind, vertical velocity, and rain-
water-mixing ratio) and hourly accumulated rainfall were
further investigated.
Figure 5 shows the RMSEs of the four model variables

for a 6-hour forecast. The RMSEs were decreased in the
assimilation window (from 00UTC to 01UTC, 00UTC indi-
cates the time of analysis), which demonstrated that NRAS
could effectively assimilate radar data. After assimilating
either reflectivity or radial velocity by NRAS, for the zonal
and meridional wind, the RMSEs of the 6-hour forecast were
smaller than those in the CTL experiment, which demon-
strated that NRAS could effectively improve the forecast.
The RMSEs of the forecast gradually decreased as the iter-
ations were increased, with two iterations yielding a conver-
gent result, which was consistent with improvement in the
initial condition (Figure 5a‒d). This result indicates that the
NRAS outperformed the PRAS in improving the forecast.
For the zonal and meridional wind, assimilating radial veloc-
ity led to a larger improvement than assimilating reflectivity,
especially in the later period of the 6-hour forecast. For the
vertical velocity and the rainwatermixing ratio (Figure 5e‒h),
assimilating reflectivity only contributed to improvements in
the first 2 hours of the forecast. In contrast, assimilating ra-
dial velocity made improvements in the first 5 hours of the

forecast; although the improvements were small, they lasted
longer. However, in the first 2 hours of the forecast, the im-
provements made by assimilating reflectivity were larger than
those made by assimilating radial velocity, especially for the
rainwater mixing ratio.
Assimilating radar data can improve rainfall forecasts

(Wang S Z et al., 2013; Sun and Wang, 2013). The improve-
ment of rainfall forecasts was investigated to further evaluate
NRAS against PRAS. The RMSEs of the hourly accumulated
rainfall forecast are shown in Figure 6. It can be seen that
compared with CTL (black line), after assimilating reflectiv-
ity, the hourly accumulated rainfall was improved in about
the first 2-hour forecast (Figure 6a), and after assimilating
radial velocity, the hourly accumulated rainfall was improved
in the first 5-hour forecast (Figure 6b). The rainfall process
depends on many model variables (e.g., wind, temperature,
and rainwater mixing ratio) through model dynamics and
thermodynamics (Tian and Feng, 2015). As shown in Figure
5, the zonal and meridional winds were improved in the
6-hour forecast after assimilating either reflectivity or radial
velocity, while for the vertical velocity and rainwater mixing
ratio, the improvement only lasted from 00UTC to 02UTC
after assimilating reflectivity, and from 00UTC to 05UTC
after assimilating radial velocity. In contrast to the improve-
ment for  the  6-hour  forecast  of  the  hourly  accumulated
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Figure 5            The RMSEs of the 6-hour forecast for zonal wind: (a) and (b), meridional wind: (c) and (d), vertical velocity: (e) and (f), and rainwater-mixing
ratio: (g) and (h). The left panel and right panel represent the results of assimilating reflectivity and assimilating radial velocity, respectively. The “0” on the
x-axis indicates the time of analysis.

Figure 6            The RMSEs of the 6-hour forecast for the hourly accumulated rainfall forecast after (a) assimilating reflectivity and (b) assimilating radial velocity.
The black line, red line, blue line, and green line indicate the CTL, NLS1-R (NLS1-V), NLS2-R (NLS2-V), and NLS3-R (NLS3-V), respectively. The “1” on
the x-axis means 1 hour after the time of analysis.
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rainfall (Figure 6), the vertical velocity and rainwater mix-
ing ratio corresponded well to the hourly accumulated rain-
fall forecast. Furthermore, the magnitude of improvement for
the vertical velocity and rainwater mixing ratio also corre-
sponded well to the magnitude of improvement for the hourly
accumulated rainfall forecast, and thus the above results in-
dicate that among the basic variables, the forecast of vertical
velocity and rainwater mixing ratio can well reflect the fore-
cast of rainfall. Because assimilating reflectivity led to larger
improvements in the vertical velocity and rainwater mixing
ratio than assimilating radial velocity in the first 2-hour fore-
cast (Figure 5), a larger improvement in the hourly accumu-
lated rainfall forecast was obtained by assimilating reflec-
tivity (Figure 6). However, without the retrieved buoyancy
and the resulting updraft, the rainwater obtained by the as-
similation of reflectivity can fall to the ground quickly (Sun
and Wang, 2013). Although assimilating reflectivity led to a
larger improvement in the hourly accumulated rainfall fore-
cast in the early stages (Figure 6a), the improvement was not
observed in the following stage due to the worse analysis of
the vertical velocity and rainwater mixing ratio in this stage.
Because assimilating radial velocity led to a sustained im-
provement in the vertical velocity and rainwater mixing ra-

tio for a longer time, the hourly accumulated rainfall forecast
correspondingly improved for a longer time (Figure 6b).
In general, the NRAS outperformed the PRAS in assimi-

lating radar data and improving the rainfall forecast. Similar
to the above results, NRAS with two iterations yielded a con-
vergent result. The largest improvement in the hourly accu-
mulated rainfall occurred in the first hour of the forecast. The
absolute errors of the hourly accumulated rainfall in the first
hour of the forecast are shown in Figure 7. Compared with
CTL (Figure 7a), after assimilating either reflectivity or ra-
dial velocity, the absolute errors (Figure 7b‒g) were gradually
decreased by increasing the iterations. However, the differ-
ences (Figure 7e‒g) among NLS1-V, NLS2-V, and NLS3-V
were much smaller than those (Figure 7b‒d) among NLS1-R,
NLS2-R, and NLS3-R, which indicated that, by increasing
the iterations for NRAS, the further improvement made after
assimilating radial velocity was much smaller than the im-
provement made after assimilating reflectivity. This may be
due to the nonlinear impact being larger when assimilating
reflectivity. In addition, with the same iterations for NRAS,
assimilating reflectivity led to a larger improvement than as-
similating radial velocity, but could be deduced by a better
analysis of the vertical velocity and  rainwater  mixing ratio

Figure 7            The absolute errors in the hourly accumulated rainfall (mm) in the first hour of the forecast for (a) CTL, (b) NLS1-R, (c) NLS2-R, (d) NLS3-R, (e)
NLS1-V, (f) NLS2-V, and (g) NLS3-V. The black star represents the location of the Doppler radar in Wuhan.
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after assimilating reflectivity in the early period (Figure
5e‒h); the vertical velocity and rainwater mixing ratio corre-
sponded well to the hourly accumulated rainfall forecast.

4.    Summary

To enhance the capability of PRAS (Zhang et al., 2015) for
effectively assimilating radar reflectivity and radial velocity,
based on the proposed NLS-4DVar approach (Tian and Feng,
2015), PRAS was upgraded to a new radar data assimilation
scheme, NRAS. The potential of NRAS compared to PRAS
was investigated using OSSEs. Reflectivity and radial ve-
locity were assimilated individually in the OSSEs, in which
NRAS with one, two, and three iterations was conducted.
The results demonstrated that the NRAS could effectively

assimilate radar data and gradually improved the initial condi-
tion by increasing the iterations, and the NRAS substantially
outperformed PRAS in radar data assimilation. Further im-
provements became smaller as the iterations were increased,
with a limited number of iterations yielding a convergent as-
similation solution. By increasing the iterations for NRAS,
the improvement made by assimilating reflectivity was larger
than the improvement made by assimilating radial velocity.
This can be explained by the fact that the reflectivity observa-
tion operator is nonlinear, while the radial velocity observa-
tion operator is linear, and therefore the nonlinear impact was
larger when assimilating reflectivity. The advantage of the
NRAS over PRAS is therefore obvious. In addition, assimi-
lating reflectivity and radial velocity has different impacts on
the model variables. Notably, because reflectivity is directly
related to the rainwater mixing ratio, assimilating reflectivity
led to a larger improvement in the rainwater mixing ratio.
To comprehensively investigate the potential of NRAS

compared to PRAS, the forecasts for some model variables
and hourly accumulated rainfall were evaluated. By increas-
ing the iterations, the NRAS gradually improved the 6-hour
forecast and almost outperformed the PRAS. Because the
nonlinear impact was larger when assimilating reflectivity,
the improvement made after assimilating radial velocity was
much smaller than the improvement made after assimilating
reflectivity when the iterations were increased. In contrast
to the improvement in the forecast of the model variables,
the vertical velocity and the rainwater mixing ratio corre-
sponded well to the hourly accumulated rainfall forecast.
Assimilating reflectivity led to a larger improvement in the
forecast of the vertical velocity and rainwater mixing ratio
in the early period, which led to a larger improvement in
the hourly accumulated rainfall forecast. Assimilating radial
velocity improved the forecast of the vertical velocity and
rainwater mixing ratio for a longer time, which led to a longer
improvement in the hourly accumulated rainfall forecast.
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