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Abstract
Mesoscale vortices (MVs) play an important role in balancing global atmospheric momentum,
moisture, and energy, and can induce almost all types of disastrous weather. To enhance the
understanding of MVs, there is a need to identify them from various types of grid data. Despite the
higher detection accuracy, manual identification is gradually being replaced by numerical methods,
because the former has enormous time and manpower requirements. However, after decades of
research to accurately detect MVs using numerical algorithms the process remains challenging.
This study proposed the use of restricted vorticity (RV) as a new metric for numerical MV
identification, based on which a numerical algorithm was developed. Compared with∼1800
manually identified MVs, the new algorithm had a hit rate of over 97%, and a Heidke skill score of
above 0.9. This indicates that RV will be of great practical value, and is suitable for popularizing
and applying immediately.

1. Introduction

A vortex usually refers to a flow with closed stream-
lines (wiki/Vortex). This type of system is one of the
most common weather systems and may occur any-
where at any time (this study only focused on cyc-
lonic vortices). According to Orianski (1975), vor-
tices with a horizontal length scale ranging from 2 to
2000 km are referred to as mesoscale vortices (MVs).
This includes mesoscale convective vortices (Davies
et al 2004), southwest vortices (Ni et al 2017, Feng et al
2019), Tibetan Plateau vortices (Curio et al 2019),
Dabie vortices (Zhang et al 2015, Fu et al 2017), trop-
ical cyclones (Doyle et al 2017), extratropical cyc-
lones (Schultz et al 2018), polar lows (Montgomery
and Farrell 1992), and explosive cyclones (Allen et al
2010). MVs play an important role in the balance
of global atmospheric momentum, moisture, and
energy (Neu et al 2013), and they are very import-
ant to the initiation of mesoscale convective systems,
when the large-scale forcing is generally weak (Song
et al 2019). MVs are closely related to almost all
types of disastrous weather, such as torrential rainfall

(Bartels and Maddox 1991, Trier and Davis 2002),
strong wind (Evans et al 2014, Grunzke et al 2017),
lightning (Bovalo et al 2014, Fierro and Mansell
2018), hail (Tessendorf et al 2005, Allen et al 2020),
blizzards (Zhang et al 2012, Rauber et al 2017), and
dust storms (Qian et al 2002, Huang et al 2016). For
this reason, MVs have long been a research hotspot in
meteorology and related fields.

To investigate MVs, the first step is to identify
them correctly. Manual identification is an effective
method andhas beenwidely utilized in previous stud-
ies (Menard and Fritsch 1989, Bartels and Maddox
1991, Tirer and Davis 2002, Kirk 2003, Davis and
Galarneau 2009, Zhang et al 2012, Fu et al 2015, 2016,
Li et al 2019, Tochimoto et al 2019). This method
can guarantee a high accuracy of MV detection (Neu
et al 2013, Fu et al 2016); however, with the emer-
gence of increasing amounts of prediction/reanalysis
gird data, manual identification has become inef-
ficient because it consumes enormous amounts of
time and manpower. Therefore, numerical MV iden-
tification algorithms are urgently needed. Scientists
have been working to develop different algorithms
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Figure 1. Panel (a) shows the 500 hPa geopotential height (blue solid line, units: gpm), relative vorticity (shading, units:
10−5 s−1), and stream lines (black lines with vectors) at 1900 UTC 12 April 2020. Panel (b) is the same as (a) but for 700 hPa at
1800 UTC 12 April 2020. Panel (c) is the same as (b) but for 0600 UTC 12 June 2010. Panel (d) shows the 700 hPa geopotential
height (blue solid line, units: gpm), RV (shading, units: 10−5 s−1), and stream lines (black lines with vectors) at 0600 UTC 12
June 2010. The green triangle marks the minimum geopotential height, and the green ‘+’ marks the maximum relative vorticity
and RV. Panels (a) and (b) are based on ERA5 reanalysis data and panels (c) and (d) are based on CFSR reanalysis data.

since the 1990s (e.g. Murray and Simmonds 1991,
Sinclair 1994, Hewson 1997, Hoskins and Hodges
2002, Zolina and Gulev 2002, Pinto et al 2005, Wernli
and Schwierz 2006, Kew et al 2010, Hanley and
Caballero 2012, Tuttle andDavis 2013,Hou et al 2017,
Curio et al 2019, Jiang et al 2020). However, des-
pite the great effort expended and important pro-
gresses that has been made, the detection of MVs
with a high degree of accuracy is still difficult. This
is because all of the identification metrics currently
used in numerical MV identification algorithms
have notable limitations (Hoskins and Hodges 2002,
Neu et al 2013).

Themetrics currently used inmost numericalMV
identification algorithms are: (a) sea level pressure
(SLP) (e.g. Murray and Simmonds 1991, Zolina and
Gulev 2002, Hanley and Caballero 2012), (b) geo-
potential height (e.g. Kew et al 2010, Lu et al 2017,

Jiang et al 2020), (c) relative vorticity (this study
only focused on the vertical component) (e.g. Sinclair
1994, Davis et al 2002, Wang et al 2011a, 2011b,
Curio et al 2018), and potential vorticity (e.g. Fu
et al 2015). According to the geostrophic adjustment
theory (Holton 2004), for mesoscale scale systems,
the pressure field adjusts to the wind field, which
means that relative vorticity (calculated by the wind
field) may be a more reliable metric to use for MV
detection. This has been confirmed by many previ-
ous studies; for example, Hodges et al (2003) repor-
ted that relative vorticity contained more informa-
tion regarding the high-frequency scale, whereas SLP
and geopotential height better represent the low-
frequency scale. Neu et al (2013) found that relative
vorticity based algorithms would be more skillful in
identifying MVs in their early stage and in detect-
ing shallow MVs; Rudeva et al (2014) found that
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Table 1. The period and vortex numbers (number of manually detected vortexes) used for evaluation, and the corresponding hit rate
and false rate of the RV-based numerical MV identification algorithm. RV= restricted vorticity, MV=mesoscale vortex, DBV= Dabie
vortex, TPV= Tibetan Plateau vortex, HSS=Heidke skill score and CFSR= Climate Forecast System Reanalysis.

Period MV type (numbers) Data type Hit rate False rate HSS

June 2002 DBVs (33) CFSR (6 hourly) 97.0% 6.0% 0.94
July 2002 DBVs (56) CFSR (6 hourly) 96.4% 1.8% 0.95
August 2002 DBVs (55) CFSR (6 hourly) 92.7% 5.8% 0.89
June 2008 DBVs (44) CFSR (6 hourly) 100% 4.5% 0.96
July 2008 DBVs (28) CFSR (6 hourly) 100% 0.0% 1.0
August 2008 DBVs (36) CFSR (6 hourly) 88.9% 0.0% 0.91
July 2013 DBVs (14) CFSR (6 hourly) 100% 7.1% 0.95
DBV total DBVs (266) CFSR (6 hourly) 95.9% 3.4% 0.94
May 2009 TPVs (475) ERA5 (hourly) 97.7% 6.7% 0.93
July 2011 TPVs (1045) ERA5 (hourly) 97.6% 9.7% 0.88
TPV total TPVs (1520) ERA5 (hourly) 97.6% 8.8% 0.90
Both total DBV+ TPV

(1786)
CFSR+ ERA5 97.4% 8.0% 0.91

identification algorithms built with relative vorticity
had a faster rate of identification than those using
SLP/geopotential-height. However, as an identifica-
tion metric, relative vorticity also has notable defi-
ciencies because a large proportion of vorticity max-
ima do not represent anMV (e.g. the green plus signs
in figures 1(a)–(c)), and the MV-associated vorticity
maxima may be significantly displaced from the MV
centroids, which are used to represent MV centers
(e.g. the MVs in figures 1(a) and (b)). This will pro-
duce too many pseudovortices, which not only sig-
nificantly increases the difficulty of MV identifica-
tion in the next step (a numerical MV identification
algorithm usually has several steps), but also reduces
the final detection accuracy. Therefore, there is an
urgent need to develop a more effective metric for
numerical MV identification.

In this study, based on the physical significance
of relative vorticity, we proposed the use of a new
MV identification metric, restricted vorticity (RV).
Compared to relative vorticity, the use of RV does
not require complicated additional processing. In
most situations, RV has a much higher consistency
with manually detected MVs than traditional metrics
(e.g. relative vorticity, SLP, geopotential height, and
potential vorticity), both in terms of MV numbers
and the location of their centers (see figures 1(c)
and (d)). Thus, RV provides an effective way to
improve the accuracy of numerical MV identifica-
tion algorithms. In addition, to the best of our know-
ledge, no previous studies have quantitatively evalu-
ated a numerical MV identification algorithm. This
study was based on ∼1800 manually detected MVs
in China (we regarded the identifications to be true),
as shown in table 1. We first compared the detec-
tion results of candidate MVs using RV (as the met-
ric) with those using relative vorticity, geopotential
height, and potential vorticity, and then we calculated
two standards to quantitatively evaluate the accur-
acy of the RV-based numerical MV identification
algorithm. For the first time, a quantitative objective
evaluation of a numerical MV detection algorithm is

reported here. The results highlight the effectiveness
of RV as a metric for numerical MV identification.
The remainder of the paper is organized as follows:
section 2 presents the data; section 3 introduces the
concept of RV, section 4 provides the application of
an RV-based numerical MV identification algorithm
and its accuracy; and finally, a conclusion is presented
in section 5.

2. Data and the two types of MVs used for
testing

In this study, two types of high-resolution reana-
lysis datasets were used for testing the performance of
the RV-based numericalMV identification algorithm:
(a) the hourly 0.25◦ × 0.25◦ European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA5
data (Hersbach et al 2020); and (b) the 6 hourly
0.5◦ × 0.5◦ National Centers for Environmental Pre-
diction Climate Forecast System Reanalysis (CFSR)
data (Saha et al 2010).

Two types of MVs in China were used to test the
usefulness of RV as a metric for numerical MV iden-
tification. One was the Tibetan Plateau vortex (TPV),
which is a unique type of MV that is generated over
the Tibetan Plateau (Wu et al 2018). Its central level is
at 500 hPa, and its typical horizontal scale is∼500 km
(Curio et al 2019). The other was the Dabie vortex
(DBV), which is formed around the Dabie Mountain
in the middle and lower reaches of the Yangtze River
(Zhang et al 2015). Its central level is 850 hPa and its
typical horizontal scale is ∼600 km (Fu et al 2016).
Both TPVs and DBVs have high frequencies of occur-
rence, and their numerical identification is challen-
ging. As table 1 shows, we used the 6 hourlyCFSRdata
tomanually detect DBVs, and a total of 266DBVs (i.e.
the number of times MV) was determined. In con-
trast, the hourly ERA5 data was used to identify TPVs
manually, and a total of 1520 DBVs were identified.

To detect both types of MVs manually, we used
similar standards, i.e. when a closed vortex center
in the stream field coupled with a notable positive
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Figure 2. Panel (a) is a schematic illustration of vorticity ζ in the horizontal grid (green lines with black and red dots), where the
two black arrows show the directions and the blue solid curve with an arrow shows the rotation direction. Panel (b) shows the
wind situation used to calculate the vorticity at the red dot, where the gray arrows (larger arrow means a larger wind speed) and
orange arrows (only mean the wind direction) show the three wind situations in the dominant term. Panels (c)–(f) show the four
typical wind situations used to calculate vorticity, where the thick orange arrows mark the wind direction of the dominant term,
and the thin purple arrows mark the wind direction of the nondominant terms.

vorticity center (>1 × 10−5 s−1) appeared, and the
diameter of the vortex was greater than 200 km (the
lower limit of aDBV/TPV), anMVwas confirmed (Fu
et al 2016, Curio et al 2019).

3. Restricted vorticity

The relative vorticity is amicro concept. For a point in
a fluid, it is equal to twice the point’s angular velocity
(the blue curved vector in figure 2(a)), whereas an

MV is a macro concept, which has closed streamlines.
The closed stream lines can be directly represented
by the velocity circulation, which is related to the rel-
ative vorticity through Green’s theorem (i.e. the sur-
face integral of relative vorticity over a region equals
the velocity circulation along its boundary line).
Green’s theorem guarantees that relative vorticity can
be a useful metric for numerical MV identification.
However, in a real situation, when calculating the rel-
ative vorticity at a point using a difference scheme (we
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Figure 3. Schematic illustration of the eight-octant MV identification method based on RV, where the large red dot at the center
represents the location of the maximum of the detected RV (i.e. the candidate MV’s center), and the thick gray dashed circle with
arrows shows the vortex determined by the typical effective radius (Re) of a specific type of MV (which represents the typical
horizontal scale of a type of MV). The calculation radius (Rc) determined the range of grids (marked by gray and blue boxes) used
for calculation, which were divided evenly into eight color shaded octants. The octant-averaged wind should satisfy the cyclonic
pattern, as shown by u (zonal wind) and v (meridional wind) for the northern hemisphere situation.

adopted the widely used central difference scheme in
this study), it is necessary to use the dots surrounding
the point. This would introduce errors into the cal-
culation. Here, we only focused on whether the sur-
rounding dots can reproduce a consistent counter-
clockwise (in the northern hemisphere) circulation
(CCC) about the central point (as the vectors in
figure 2(c) show).

If the CCC condition is satisfied, the relative vor-
ticity ζ at the central point will be positive. However,
a positive ζ does not mean that the CCC condition
is met. There are many situations in which the relat-
ive vorticity is positive, whereas the surrounding dots
do not meet the CCC condition. This is one of the
main reasons why the relative vorticity maxima may
show a notable inconsistency with real MVs. Some
typical examples are provided as follows. For conveni-
ence, we defined the larger terms (i.e. ∂v

∂x and −∂u
∂y )

in ζ = ∂v
∂x −

∂u
∂y as the dominant terms (u and v are

the zonal andmeridional wind, respectively), with the
remaining term being the nondominant term. The
sign of ζ is only determined by the dominant term,
although a total of four points are used in its calcula-
tion.

If −∂u
∂y is the dominant term and it is positive,

there are three possible situations (zero zonal-wind
was not considered), as shown in figure 2(b).
However, only the situation shown by the orange
vectors (figure 2(b)) has the potential to satisfy the

CCC condition. If the dominant term is determined
as mentioned above, there are at least four situations
regarding the wind direction in the nondominant
terms (zero meridional-wind was not considered), as
shown in figures 2(c)–(f). Of these, only the situation
shown in figure 2(c) satisfies the CCC condition.

In this study, we introduced the concept of RV
to ensure that: (a) the four points (black dots in
figure 2(a)) used for calculating ζ at the central point
(red dot in figure 2(a)) satisfied the CCC condi-
tion; and (b) the two terms in the relative vorticity
have a similar relative importance, because an MV is
mainly quasi-centrosymmetric. For condition (b), we

defined α= ∂v
∂x/

(
−∂u

∂y

)
, which can be used to indic-

ate the relative importance of the two terms in ζ .

4. A quantitative test

4.1. Evaluationmethods
To quantitatively evaluate the accuracy of a numer-
ical MV identification algorithm, we developed two
standards. The first standard was the hit rate, which
indicated of all real MVs (i.e. those that we manu-
ally detected), how many MVs are detected correctly.
We set NT as the true number of MVs and NH is a
number describing what proportion of the true MVs
(NH ≦ NT) were correctly detected by the identific-
ation algorithm. Then, the hit rate = NH/NT, which
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Table 2. The parameters used for detecting DBVs and TPVs, and their main information used in the detection process, where dx is the
grid spacing, Rc is the calculation radius and Re is the effective radius (which represents the typical horizontal scale of a type of MV).
MV=mesoscale vortex, DBV= Dabie vortex, and TPV= Tibetan Plateau vortex.

α Rc N

Objectives

Regulate the relative
importance of the two
terms in restricted vorticity

Determine the box which
is divided evenly into eight
octants

Specify the number of oct-
ants which satisfy the cyc-
lonic rotation

Suggested
ranges

0.2⩽ α⩽ 5 dx < Rc < Re 6⩽ N ⩽ 8

DBV test
(CFSR)

0.2⩽ α⩽ 5 Rc = 2dx (0.5◦) N = 6

TPV test
(ERA5)

0.2⩽ α⩽ 5 Rc = 3dx (0.25◦) N = 7

Figure 4. Panels (a) and (e) show the stream field (black line with arrows) and the RV (shading, units: 10−5 s−1). Panels (b) and
(f) are the same as panel (a) but for the relative vorticity (shading, units: 10−5 s−1). Panels (c) and (g) are the same as panel (a)
but for the geopotential height (shading, units: gpm), and panels (d) and (h) are the same as panel (a), but for the potential
vorticity (shading, units: PVU). All panels are at 700 hPa (using CFSR (Climate Forecast System Reanalysis) data), panels (a)–(d)
are at 1800 UTC 11 June 2008, panels (e)–(h) are at 1800 UTC 24 August 2008, and the red dots show the candidate DBV centers
(for panels (a) and (e), they are determined by the maxima of RV; for panels (b) and (f), they are determined by the maxima of
relative vorticity; for panels (c) and (g), they are determined by the minima of geopotential height; and for panels (d) and (h),
they are determined by the maxima of potential vorticity).

implies that a larger hit rate means a better perform-
ance. The second standard was the false rate, which
evaluated how many MVs were detected in addi-
tion to the real MVs (we considered these MVs to
be false). If the identification algorithm still detected
otherMVs in addition to the trueMVs, and the num-
ber of these false MVs is set asNF (NF ⩾ 0). Then, the
false rate=NF/NT, which implies that a smaller false
rate means a better performance. Following Song and
Zhang (2017, 2018), we also calculate the Heidke skill
score (HSS) to evaluate the identification algorithm.
Its expression is as follows:

HSS=
2(NHNC −NFNM)

(NH +NM)(NM +NC)+ (NH +NF)(NF +NC)
(1)

where NM = NT− NH is the number of MVs that
are missed by the algorithm, and NC is the num-
ber of correct identification of noMV situations. The
maximum value of HSS is 1.0, which means that the
identification algorithm is perfect, and as values of
HSS decrease, its performance becomes worse.

4.2. An RV-based numerical MV identification
algorithm
This study developed an RV-based numerical MV
identification algorithm (figure 3). Its key steps were
as follows: (a) Use a 2◦ × 2◦ (the lower limit of the
diameter of a DBV/TPV is ∼200 km) box to scan
the 850 hPa/500 hPa RV field within the region of
interest (25◦N–36◦N, 111◦E–119◦E)/(25◦N–40◦N,
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Figure 5. Panels (a) and (e) show the stream field (black line with arrows) and RV (shading, units: 10−5 s−1). Panels (b) and (f)
are the same as panel (a) but for the relative vorticity (shading, units: 10−5 s−1). Panels (c and g) are the same as panel (a) but for
the geopotential height (shading, units: gpm). Panels (d) and (h) are the same as panel (a), but for the potential vorticity
(shading, units: PVU). All panels are at 500 hPa (using ERA5 data), panels (a)–(d) are at 1800 UTC 11 June 2008, and the black
crosses show the candidate TBV centers.

76◦E–100◦E) for candidate DBV/TPV centers. The
location of the center of a candidate DBV/TPV was
defined as the location of the maximum RV within
the 2◦ × 2◦ box. (b) Use the center of the candidate
DBV/TPV to draw a box that has a side length of
2 × Rc (Rc was defined as the calculation radius).
Divide the box into eight octants (figure 3) and cal-
culate the octant-averaged winds. (c) Check how
many (N is defined as the number) of the eight
octants show a cyclonic rotation pattern (as shown
by the octant-averaged wind in figure 3). (d) If N
is above a threshold value (shown in table 2), the
candidate DBV/TPV was confirmed as a qualified
MV, otherwise it remained unqualified. There were
three parameters (table 2) that needed to be properly

determined before conducting the numerical MV
identification. The values of these parameters in this
study are shown in table 2.

4.3. Quantitative evaluation results
Figure 4 shows a comparison of RV and relative vor-
ticity, geopotential height, and potential vorticity as
an MV identification metric for DBVs. Similarly to
key step (a) described in section 4.2, the candid-
ate MV centers were also determined by finding the
maximum relative vorticity (figures 4(b) and (f)),
minimum geopotential height (figures 4(c) and (g)),
and maximum potential vorticity (figures 4(d) and
(h)) within a 2◦ × 2◦ moving box. It was apparent
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that the use of RV (figures 4 (a) and (e)) pro-
duced a much more credible estimate of the can-
didate DBVs (both in terms of the number and loc-
ation) than the use of the other three traditional
metrics. Figure 5 shows a comparison of the use
of the different metrics for detecting TPVs. Once
again, the use of RV resulted in a much better per-
formance when estimating candidate TPVs, partic-
ularly in terms of the number. Overall, compared
to the use of traditional metrics, RV was found to
be a much more effective metric for numerical MV
identification.

Based on the numerical MV identification
algorithm suggested in section 4.2, we conducted
MV detections for 266 DBVs that were manually
confirmed in a 7 month period (table 1). The hit
rate ranged from 88.9% to 100%, with a mean value
of 95.9%. The false rate ranged from 0% to 7.1%,
with a mean value of 3.4%. The HSS ranged from
0.89 to 1.0, with a mean value of 0.94. For TPVs, we
focused on 1520 manually detected vortices (table 1)
that were confirmed in a 2month period. The hit rate
was above 97%, the false rate was below 10%, and
the HSS had a mean value of 0.90. Overall, for both
types of MV, the average hit rate was ∼97.4%, the
average false rate was ∼8.0%, and the average HSS
was ∼0.91. In contrast, for the traditional numerical
MV identification algorithms based on relative vorti-
city (Curio et al 2018), geopotential height (Jiang et al
2020) and potential vorticity, the highest average hit
rate (of the three algorithms) was∼81.6%, the lowest
average false rate was ∼15.1%, and the largest aver-
age HSS was ∼0.76 (not shown). This indicates that
the RV-based numerical MV identification algorithm
shows amuch better performance than the traditional
algorithms, and therefore is of great practical value.

The horizontal resolution of the data used for
numericalMV identification tends to affect the detec-
tion accuracy. On the one hand, a higher resolution
contributes to both a reduction in the miss rate of
candidate MVs in step (a) (section 4.2) and to obtain
higher-resolution octant-averaged winds in step (b),
both of which lead to improvements in the hit rate.
However, on the other hand, the identification of
more candidate MVs provides more opportunities to
make false MV detections. Therefore, as the hori-
zontal resolution becomes higher, the hit rate and
false rate both tend to increase (table 1), with the false
rate grows rapider than the hit rate. This results in an
overall decrease in HSS (table 1), which means that
the performance of the numerical MV identification
algorithm becomes worse.

5. Conclusion and discussion

Due to their important role in balancing global
atmospheric momentum, moisture, and energy, and
their close relationship with almost all types of dis-
astrous weather,MVs have long been a research focus.

The accurate detection of MVs is of critical import-
ance in MV studies. With the emergence of increas-
ing amounts of grid data, numerical identification
algorithms have become a much more efficient way
of detecting MVs than manual identification. How-
ever, after decades of research, the development of
an accurate numerical MV identification algorithm
still remains a very challenging task. One of the main
reasons for this is that all of the metrics used for
MV detection have notable limitations. Most of the
algorithms currently in use need a metric to determ-
ine MV candidates, based on which further checks
are made to confirm the final qualified MVs. A bet-
ter metric could lower the miss rate of valid MV can-
didates (those MV candidates that can finally be con-
firmed as realMVs are classed as validMV candidates,
otherwise they are invalidMV candidates) and reduce
the number of invalid MV candidates, both of which
will improve the final MV detection accuracy.

In terms of physical significance, this study pro-
posed the use of a new metric for numerical MV
detection, RV, which does not need any complic-
ated additional processing. This metric resulted in
a much better performance than the application of
other widely used metrics, both in the representa-
tion ofMV numbers and the location of their centers.
Based on this metric, we proposed a numerical MV
identification algorithm, and quantitatively evaluated
its accuracy in detecting two types of MVs in China.
It was found that, on average, the algorithm had a
hit rate of more than 97%, a false rate of less than
10%, and an HSS of above 0.9. This indicated that
the RV-based numerical MV identification algorithm
will be of great practical value. However, in this study,
we only tested the effectiveness of the RV as an MV
identification metric in one algorithm, and the test
was merely conducted on two types of MVs based
on two types of reanalysis data. This will have lim-
itations to comprehensively evaluate the real practic-
ability of the RV. In the future, different types of MVs
and a larger number of MVs will be used to further
check the effectiveness of the numerical identification
algorithm developed in this study. We will also test
more combinations of the three parameters shown in
table 2, which will improve the performance of the
algorithm. The relationship between a dataset’s hori-
zontal resolution and the accuracy of a numericalMV
identification algorithm will be further investigated.
In addition, because it is effective and easy to cal-
culate, we strongly suggest that practitioners should
use RV as a metric for determining MV candidates in
their numerical MV identification algorithms.
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