
represented by 200, 300, 400, and 500 hPa for C1 and C2MCSs

and by 200, 500, 700, and 850 hPa for C3 and C4 MCSs, re-

spectively. In addition, we eliminatedMCSs that were initiated

at the same time, and in this study 1026, 834, 360, and 444MCSs

were composited for C1, C2, C3, and C4, respectively.

In the upper troposphere (200 hPa), common features of the

four categories of MCSs include an upper-level jet (ULJ, wind

speed $ 30 m s21) around 408N and the South Asian High

(SAH) controlling those south of 308N. However, C1 and C3

MCSs are initiated in the south of the ULJ, while C2 and C4

MCSs are more than 1000 km away from the ULJ. The ULJ

therefore has little influence on the formation of C2 and C4

MCSs. Themain difference is that C1MCSs are controlled by a

straight westerly flow in the north of the SAH, and the C2, C3,

and C4 MCSs are controlled by anticyclone circulation in the

east of the high pressure. In addition, the SAH related to C2

MCSs is stronger than that for the others, the position of the

SAH for C3 MCSs extends further northward than for the

other three categories, and the range of the SAH for C4 MCSs

is the smallest (Fig. 17).

The composite circulation at the middle level (300 hPa) for

C1 and C2 MCSs is similar to that at the upper level

(Figs. 18a,b). At 400 hPa, a cyclone appears in the Bay of

Bengal and high pressure dominates the south of the Tibetan

Plateau, the west of the Indochina Peninsula, and Bangladesh

(Figs. 18c,d). The active area of C1 MCSs is still controlled by

straight westerly flow in the north of the high-pressure region

(Fig. 18c). At 500 hPa, westerly wind still controls the region of

the C1 MCSs. The control of the westerly wind in the middle

and lower levels is conducive to the eastward propagation of

MCSs. In addition, high specific humidity and cyclonic circu-

lation appear in the east of the Sichuan Basin, which is favor-

able for eastward propagation and long tracking of C1 MCSs

(Figs. 18e and 8a). The active area of C2 MCSs is in the east of

the high pressure at 400 hPa, which is similar to that at 300 hPa

(Fig. 18d). The region of C2 MCSs is in the control of the high

pressure at 500 hPa. The wind speed, specific humidity, and

moisture content in the active region of C2 MCSs are smaller

than those of C1 MCSs (Fig. 18f). Previous studies have re-

vealed that cyclones in the Bay of Bengal can transport more

FIG. 12. Box-and-whisker plots of (a) maturation area (103 km2), (b) maximum areal growth rate, (c) average

maximum TBB gradient (K km21), and (d) average TBBmin (K). The boxes cover the 25th–75th percentiles, the

horizontal lines in the boxes mark the median values, the pentagrams denote the mean values, and the lower and

upper whiskers cover the 5th–95th percentiles.
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water vapor to the plateau area under southwesterly and

southerlywind (Xu et al. 2002; Chen et al. 2006). The combination

of a cyclone in the Bay of Bengal and high pressure in the west of

the Indochina Peninsula and Bangladesh can transport water

vapor to the active areas of C1 and C2 MCSs.

At 500 hPa, the cyclones are also active in the Bay of Bengal

for C3 and C4 MCSs, which is similar to the C1 and C2 MCSs

(Figs. 19a,b). At the same time, there are relatively small high-

pressure activities in the Indochina Peninsula that are much

weaker than those of C1 and C2 MCSs. The matching of cy-

clones in the Bay of Bengal and high pressure in the Indochina

Peninsula is more conducive to transporting water vapor from

the Bay of Bengal to the active regions of C3 and C4 MCSs.

Moreover, cyclonic circulation is stronger for C3 MCSs than

FIG. 13. Box-and-whisker plots of (a) TBBmin time, maturation area time, and their time difference, and

(b) TBBmin standard time and maturation area standard time. The boxes cover the 25th–75th percentiles, the

horizontal lines in the boxes mark the median values, the dots denote the mean values, and the lower and upper

whiskers cover the 5th–95th percentiles.

FIG. 14. Contribution rates of MCS-related precipitation to the local total accumulated precipitation of the four

categories of MCS during May–September (colored shading; %), showing (a) C1, (b) C2, (c) C3, and (d) C4. Gray

shading denotes elevations higher than 500 m.
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for C4 MCSs, which could induce water vapor to be trans-

ported to the north area (C3 MCSs’ active area). The locations

of C3 MCSs are controlled by southwesterly airflow ahead of

the trough at 500 hPa (Fig. 19a), accompanied with the activity

of a vortex at 850 hPa in the western Sichuan Basin (Fig. 19e).

At 850 hPa, the region of C3 MCSs is controlled by a south-

westerly wind with a speed of 6 m s21, and there is a high value

of water vapor flux to the south of the active region. The

transportation of abundant warmth and moisture flow is ben-

eficial to moisture convergence and results in the formation of

FIG. 15. As in Fig. 14, but for the contribution rate of accumulated precipitation of the four categories of MCS-

related SDHR to the local total accumulated precipitation of SDHR.

FIG. 16. As in Fig. 15, but for the contribution rate of the frequency of the four categories of MCS-related SDHR to

that of the local total frequency of SDHR.
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convection in the region of the C3 MCSs (Fig. 19e). Compared

with the circulations of C3MCSs, C4MCSs has weaker cyclonic

circulation in the Bay of Bengal and no high pressure in the

Indochina Peninsula at 500 hPa (Fig. 19b). The 700 hPa vortex

located to the northwest side of the region of the C4MCSs is not

conducive to the northward transportation of moisture, which

may be the reason that the active area of C4MCSs is south of the

C3MCSs (Fig. 19d). The southwest vortex at 850 hPa is active in

the northwest of the region of the C4 MCSs, where the high

value of water vapor flux in the southeast of the vortex and

convergence are favorable for the formation of C4 MCSs

(Fig. 19f).

In summary, in the upper troposphere (200 hPa), the four

categories of MCSs are controlled by the SAH, while the

ULJ (wind speed $ 30 m s21) around 408N affects only the

C1 and C3MCSs. The cyclone activities in the Bay of Bengal

and the high pressure in the Indochina Peninsula in the

middle troposphere are the most important systems for the

formation of the four types of MCSs, because the matching

of these two systems is favorable for the transportation of

water vapor to the active area of the MCSs. The locations

and intensities of these two systems, either accompanied

by a vortex or a southwesterly wind in the low-level tropo-

sphere, determine the location and intensity of the convergence

of water vapor flux, which induces the initiation locations of the

four types of MCSs.

4. Conclusions and discussions

Based on hourly geostationary satellite data, the MCSs gener-

ated in the southwest mountain area (with an elevation$ 500 m)

during May–September of 2009–18 were identified and

tracked. They were then grouped into four categories using

K-means clustering based on their location. The main

characteristics of the four types of MCSs and their envi-

ronmental conditions were investigated. The following new

findings were obtained.

1) A total of 3059 MCSs of the 2009–18 warm seasons (May–

September) initiated over the southwest mountain area

with an elevation no less than 500 m were identified and

tracked, and these were classified into four categories de-

pending on their initial positions. These MCSs were active

and were generated at places across the southwest moun-

tain area. The C1 MCSs were generated in the northeast of

the Tibetan Plateau (908–1058E, 288–358N), and thenmoved

eastward, northeastward, or southeastward and matured

or terminated in the process of moving to the down-

stream area. The other three types of MCSs moved mainly

FIG. 17. Composite background circulations for (a) C1, (b) C2, (c) C3, and (d) C4 MCSs at the formation stage at 200 hPa, showing

geopotential height (black lines; gpm), temperature (red dotted lines; 8C), and wind speeds larger than 30 m s21 (blue wind barbs). The

green box denotes the study region, and gray shading denotes elevations higher than 500 m.
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eastward, and a few MCSs moved southwestward. The C2

MCSs were mainly active in the southeast of the Tibetan

Plateau and the west of the Yungui Plateau (988–1068E,
248–308N). The C3 and C4 MCSs were active in the

Wushan, Qinling, and Ta-pa Mountains (1048–1148E, 288–
358N) and theWuling andXuefengMountains (1058–1148E,
248–288N), respectively, and they matured or died out in the

east, near their site of formation.

2) The four types of MCSs had similar monthly variation and

temporal characteristics, which demonstrated a peak in July

and aminimum inMay. However, they had different spatial

and temporal variations. The majority of the MCSs had a

lifespan between 3 and 21 h, but MCSs initiated in the east

of the Tibetan Plateau were longer lived than the others.

Examination of the diurnal variations of the formation,

maturity, and dissipation times showed that the peak of the

formation time was 1400–1800 LST, and the maturity–

dissipation time was 1600–2300 LST. In addition, C1 and C2

MCSs had a subpeak in their maturity time at 0000–0300 LST

and in their dissipation time at 0000–0900 LST.

FIG. 18. Composite background circulations for (left) C1 and (right) C2 MCSs at the formation stage at (a),(b) 300; (c),(d) 400; and

(e),(f) 500 hPa, showing geopotential height (black lines; gpm) and wind field (wind barbs; 4 m s21). The red box denotes the study region,

gray shading denotes elevations higher than 500 m in (a)–(d), and purple lines are 3000-m elevations in (e) and (f). The color shading in

(a) and (b) indicates divergence (1026 s21), in (c) and (d) this stands for relative vorticity (1026 s21), and it represents specific humidity

(g kg21) in (e) and (f).
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3) On the basis of the analysis of several cloud parameters, the

different characteristics during the development of four

types MCSs were revealed. The sizes of the MCSs over

higher elevations (C1 and C2 types) were larger than those

over lower elevations, while the C1MCSswere the largest and

developed more rapidly than the others. However, C2 and C4

MCSs had a larger average maximum TBB gradient and a

smaller average TBBmin, meaning they were stronger than the

other two types. Most MCSs attained their TBBmin in the first

half of their life and reached maturation later. The contribu-

tion rates of C1 and C2 MCSs to the total precipitation were

greater than 30%, while those of C3 and C4 MCSs were less

than 25%. The contribution rate of MCSs to SDHR was over

60%, and this was mainly influenced by local convection.

4) The ERA5 hourly reanalysis data were employed to reveal

major synoptic circulation at the formation time of the four

categories of MCSs and distinguish their differences. The

formation regions of the four types of MCSs were con-

trolled by the SAH in the upper troposphere, while a ULJ

around 408N affected only the C1 and C3 MCSs. The

matching of a cyclone in the Bay of Bengal and high

pressure in the Indochina Peninsula in the low-to-middle

FIG. 19. Composite background circulations for (left) C3 and (right) C4 MCSs at the formation stage at (a),(b) 500; (c),(d) 700; and

(e),(f) 850 hPa, showing geopotential height (black lines; gpm) and wind field (wind barbs; 4 m s21). The red box denotes the study area

and gray shading denotes elevations higher than 500m. The colored shading in (a)–(d) stands for relative vorticity (1026 s21) and for water

vapor flux (g s kg21) in (e) and (f).
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troposphere was favorable for the transportation of water

vapor to the active areas of theMCSs. The following factors

determined the initiation locations of the four types of

MCSs: the locations and intensities of cyclones in the Bay

of Bengal and high pressure in Indochina Peninsula in

the low-to-middle troposphere, and vortexes or south-

westerly winds in the low-level troposphere. These fac-

tors affect the location and intensity of the convergence

of water vapor flux, which regulates the location and

intensity of convection.

This statistical study established that the four types of MCSs

had different characteristics and each made a large contribu-

tion to the SDHR. This indicates that the prediction of local

MCSs is critical to the accuracy of forecasts of SDHR. In ad-

dition, through compositing, favorable synoptic circulations for

the formation of MCSs were compared, but the triggering

conditions were not revealed. Therefore, future work should

choose a number of cases to study the triggering conditions and

their initiation and development mechanisms.
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