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ABSTRACT: Precipitation forecasts from the ECMWF model from March to September during 2015–18 were evaluated

using observed precipitation at 2411 stations from the China Meteorological Administration. To eliminate the influence of

varying climatology in different regions in China, the stable equitable error in probability space method was used to obtain

criteria for 3- and 6-h accumulated precipitation at each station and classified precipitation into light, medium, and heavy

precipitation. Themodel was evaluated for these categories using categorical and continuous methods. The threat score and

the equitable threat score showed that the model’s forecasts of rainfall were generally more accurate at shorter lead times,

and the best performance occurred in the middle and lower reaches of the Yangtze River basin. The miss ratio for heavy

precipitation was higher in the northern region than in the southern region, while heavy precipitation false alarms were

more frequent in southwestern China. Overall, the miss ratio and false alarm ratio for heavy precipitation were highest in

northern China and western China, respectively. For light and medium precipitation, the model performed best in the

middle and lower reaches of the Yangtze River basin. The model predicted too much light and medium precipitation, but

too little heavy precipitation. Heavy precipitation was generally underestimated over all of China, especially in the western

region of China, South China, and the Yungui Plateau. Heavy precipitation was systematically underestimated because of

the resolution and the related parameterization of convection.

SIGNIFICANCE STATEMENT: Quantitative precipitation forecast is an important reference for operational

weather forecasting. Verification of model-forecast precipitation in China is complicated because of its complex cli-

matology. To reveal the spatiotemporal performance of the ECMWF model for 3- and 6-h precipitation forecasts in

different regions of China, we defined thresholds for different rainfall categories from the cumulative precipitation at

each station and evaluated the model after eliminating the influence of climatology. These verification results will help

numericalmodel developers to improve their models and will also help forecasters have a better understanding of model

predictions. Future research will focus on the accuracy of the model’s predictions under different circulation situations.

KEYWORDS: Forecast verification/skill; Numerical weather prediction/forecasting; Precipitation

1. Introduction

Precipitation is one of the most important variables in

weather forecasting. Currently, as a result of many factors, the

accuracy of quantitative precipitation forecasts (QPF) is in-

sufficient to satisfy societal requirements. Many countries have

set up special projects to improve QPF, such as the Working

Group on Numerical Experimentation in the twentieth

century (Ebert et al. 2003), the Improvement of Microphysical

Parameterization throughObservationalVerificationExperiment

in 2001 (Stoelinga et al. 2003), and the Southern China

Monsoon Rainfall Experiment in China during 2013–15 (Luo

et al. 2017).With the rapid increases in computational power of

massively parallel computers and improvements in the assim-

ilation of high-resolution atmospheric observations over the

last decade, quantitative precipitation prediction using nu-

merical models has become important in operational weather

prediction (Golding 2000; Benjamin et al. 2019). Evaluation of

the performance of these model predictions could help re-

searchers improve the various processes in themodels and help

users understand their reliability (Casati et al. 2004; Kober

et al. 2012; Kniffka et al. 2020). Many operational weather

forecast centers take QPF verification scores as important in-

dices to represent the performance of precipitation models.

Since the outputs from numerical models have become widely

used in operational QPF, researchers and operational fore-

casters have conducted in-depth evaluations of QPF accuracy

(Mullen and Buizza 2001; Rodwell et al. 2010; Haiden et al.

2012). Owing to the complexity of its topography and its highlyCorresponding author: Jianhua Sun, sjh@mail.iap.ac.cn
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variable climate, China lacks in-depth and long-term verifications

of precipitation models, and there are no objective quantitative

correction methods and indexes pertaining to the country, which

has led to an insufficient understanding of the results from nu-

mericalmodels and limitedQPF correction performance (Bi et al.

2016). Verification of numerical model precipitation forecasts is

therefore important for improving QPF in China.

Generally, for QPF verification scores to be useful, they need

to be clearly and intuitively understood by weather forecasters.

Some categorical scores are used to verify the accuracy of op-

erational forecasts, such as the critical success index, also known

as the threat score (TS) (Schaefer 1990), modified Heidke

skill score (Doswell et al. 1990), odds ratio (Stephenson 2000),

and the equitable threat score (ETS) (Baldwin and Kain 2006;

FIG. 1. (a) Geographical distribution of 2411 observation stations (blue dots) and elevation

(shading; m) in China. (b) Regional divisions and elevation of China (shading; m): Sichuan

basin (SCB), North China (NC), Northeast China (NE), Huang–Huai River basin (HH),

middle and lower reaches of Yangtze River basin (MLYR), South China (SC), Yungui

Plateau (YG), Northwest China (NW), and Bohai Bay (BB).

TABLE 1. Rainfall classification standards of the CMA.

Category 1 h (mm) 12 h (mm) 24 h (mm)

Light rainfall 0.1–2.5 0.1–5 0.1–10

Moderate rainfall 2.5–8 5–15 10–25

Heavy rainfall 8–15 15–30 25–50

Torrential rainfall .16 .30 .50
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Brill and Mesinger 2009). Among these, the TS and the ETS

are the most commonly used scores for precipitation evalua-

tion because their physical meaning is clear. However, these

scores only indicate whether the predicted precipitation is

correctly forecast at a specific location, but do not reflect the

degree of precipitation deviation between the observation and

prediction. Consequently, two categorical methods associated

with spatial diagnostics have been developed: filtering and

displacement (Harris et al. 2001; Roberts and Lean 2008;Wang

and Lu 2010; Liu et al. 2011). The filteringmethod ismainly used

to evaluate the ability of models to predict multiscale weather

systems, while the displacement method takes more account of

the deviations in location, area, and orientation, between forecasts

and observations. The common verification techniques are the

grid-to-grid and site-to-site methods. The site-to-site method is

simple and practical (Harris et al. 2001; Tiziana et al. 2002;

Accadia et al. 2005) and can provide users with the basic fea-

tures and average accuracy of the precipitation forecast. This

method has been used widely for a long time by the National

Meteorological Center of the China Meteorological

Administration (CMA) (Wang and Yan 2007; Xiong 2011).

Heavy rainfall in mountainous regions more frequently

leads to secondary disasters such as landslides and debris flows.

Some research has focused on the evaluation of precipitation

prediction by the ECMWF model in eastern regions of China

(e.g., Huang and Luo 2017; Cao et al. 2019), but there has

been a lack of attention to mountainous regions and the

Tibetan Plateau in western China. It is therefore necessary to

investigate the performance of the ECMWF precipitation

model in China as a whole. Previous studies attempting to verify

precipitation forecasts in China have mostly used the same

thresholds for different categories of rainfall, as is defined and

used operationally by the CMA (Su et al. 2014; Fu et al. 2014;

Pan et al. 2017a; Cao et al. 2019). However, climatological

differences lead to great differences in the total amount and

numbers of precipitation in different regions of China (Qian

and Lin 2005; Li et al. 2015). When evaluating a precipita-

tion model, the threshold at a given station should therefore

be defined taking into account the climatological charac-

teristics of precipitation at that station (Rodwell et al. 2010).

In the present study, the stable equitable error in probability

space (SEEPS) method is employed to obtain thresholds for

different categories of precipitation at each station. The

thresholds obtained using this method are objective and

reflect the precipitation climatology of each station

(Rodwell et al. 2010; Haiden et al. 2012).

The present study evaluates ECMWFmodel precipitation

forecasts with lead times up to 168 h from March to

September during 2015–18, using a time resolution of 3 h for

lead times up to 72 h and a time resolution of 6 h for lead

times greater than 72 h. This evaluation of a model with high

spatial and temporal resolution over the whole of China is

useful to both users and model developers. The remainder

of the paper is organized as follows. Section 2 introduces the

data and methods in detail. Section 3 focuses on the evalu-

ation results for different categories of precipitation and

lead time in China. Finally, the conclusions and a discussion

are given in section 4.

FIG. 2. The number of light precipitation events (accumulated precipitation no greater than 0.2mm) as a percentage of the total number of

precipitation events (%): (a) 3 and (b) 6 h. Threshold of medium and heavy precipitation of stations (mm): (c) 3 and (d) 6 h.

TABLE 2. Two-category contingency table.

Observation

Forecast

Yes No

Yes NA NC

No NB ND

JUNE 2021 L I U ET AL . 1045

Unauthenticated | Downloaded 12/28/22 02:03 AM UTC



2. Data and methodology

a. Observational precipitation data

Observational hourly precipitation data provided by the

CMA from Chinese national stations for the period 2015–18

were used to verify model precipitation predictions. Figure 1a

shows the geographical distribution of the 2411 national CMA

sites. Most of these stations are distributed across the

central and eastern regions, while the station density is

relatively low in the northwestern regions and the Tibetan

Plateau. In this study, the area east of 1058E is referred to as

the eastern region of China, and the area north of 358N is

TABLE 3. Evaluation of scores and their definitions.

Definition Formula Reference

Threat score
TS5

NA

NA 1NB 1NC

Schaefer (1990)

Equitable threat score
ETS5

NA 2Nref

NA 2Nref 1NB 1NC

,

where

Nref 5
(NA 1NB)(NA 1NC)

(NA 1NB 1NC 1ND)

Baldwin and Kain (2006); Brill and Mesinger (2009)

Special miss ratio
SMR5

NSC

NSA 1NSC

Rossa et al. (2008)

Special false alarm ratio
SFAR5

NSB

NSA 1NSB

Huang and Luo (2017)

Bias score
BS5

NA 1NB

NA 1NC

Haiden et al. (2012)

Mean error

ME5
�
N

i51

(Fi 2Oi)

N

Hong (2003); Chien et al. (2006)

Normalized root-mean-square error

NRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

(Fi 2Oi)
2

N

vuuut

R

FIG. 3. (a) The number of total precipitation events, and proportion of (b) light precipitation events, (c) medium precipitation events, and

(d) heavy precipitation events (%).
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FIG. 4. Spatial distribution of the TS for ‘‘rain or no rain’’: (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.

FIG. 5. Spatial distribution of ETS for ‘‘rain or no rain’’: (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.
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referred to as the northern region of China. Figure 1b shows

the detailed regional division of China used in the present

study. This observational hourly precipitation dataset has been

used in various previous weather and climate studies (Yu et al.

2010; Li et al. 2015; Zheng et al. 2016). Although the hourly

precipitation data provided by the CMA is quality controlled,

further quality control was carried out to ensure its accuracy

for this study. Our quality control focused on samples whose

hourly precipitation was more than 30 mmh21. If there was no

precipitation at the surrounding stations within 3 h before and

after such samples, it was considered that they were incorrect.

Based on this quality-control process, 138 precipitation records

were excluded.

b. Model precipitation data

The forecast data used in this study are from the ECMWF

operational-forecast model, at 0.1258 3 0.1258 resolution, ini-
tialized daily at 0000 UTC, and with lead times of 7 days

(168 h). Precipitation forecasts from March to September

2015–18 (i.e., spring, summer, and early autumn) were evalu-

ated. The time resolution is 3 h during days 1–3 and 6 h during

days 4–7. The gridded precipitation forecast data were inter-

polated to the CMA stations (Fig. 1a) using linear interpola-

tion (North et al. 2013).

c. Verification methods

To examine the predictive ability of the ECMWF opera-

tional model for different regions and precipitation categories

in China, precipitation thresholds should be obtained for the

different regions on the basis of local climatology. However,

in CMA operations, all stations in China are assigned the

same threshold (Table 1), which does not account for the

geographical characteristics of climatological cumulative pre-

cipitation. It is necessary to define thresholds for different

3- and 6-h precipitation categories for each station separately

to account for this geographical variation.

The SEEPS method proposed by the ECMWF can better

account for the geographical variation in precipitation clima-

tology (Rodwell et al. 2010), as it provides thresholds for dif-

ferent precipitation categories under different geographical

conditions and can be used to verify the accuracy of precipi-

tation forecasts under varying climates (Rodwell et al. 2010;

Haiden et al. 2012; North et al. 2013). Rainfall in China mainly

occurs in the warm season, controlled by the East Asian

summer monsoon (Tao and Chen 1987; Xie and Arkin 1997;

Wang and Lin 2002), but the rainfall begins in April over South

China. Based on observed precipitation data from April to

September of 2013–17, the SEEPS was employed to classify

precipitation into light, medium, and heavy precipitation. All

precipitation events in this station are sorted by rainfall

amount, Light precipitation is defined as having a 3- or 6-h

accumulation no greater than 0.2mm (P # 0.2mm), while the

number of the medium precipitation events is defined to be

twice that of heavy precipitation events. For instance, all pre-

cipitation event (.0.2mm) is 120 in station A, which is sorted

as P(1), . . . , P(80), . . . , P(120) based on precipitation amount.

FIG. 6. Number of special miss events: (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.
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medium precipitation is 0.2mm , P , P (80), heavy precipi-

tation events is P $ P (80). Thereby, the threshold between

medium and heavy precipitation can be obtained from all the

nonlight precipitation data. In this paper, we only used the

SEEPS to classify the categories of precipitation, and used

the commonly operational skill scores to evaluate precipitation

prediction in China.

Figures 2a and 2b show the number of light precipitation

events (accumulated precipitation no greater than 0.2mm) as a

percentage of the total numbers of precipitation events for

3- and 6-h accumulations, respectively. The proportion of 3-h

light precipitation events in the eastern region of China is

generally lower than that in the western region (Fig. 2a); the

proportion in the middle and lower reaches of the Yangtze

River basin (YRB) and South China was less than 25%, and

that in the other eastern stations was about 25%–30%. The

proportion from the west of the Tibetan Plateau to the middle

of Xinjiang was highest, at about 32%–40%. The distribution

of the proportion of 6-h accumulation was similar to that of 3-h

accumulation, but the values of the 6-h proportion were less

than the 3-h values (Fig. 2b). The geographic distribution

patterns of themedium/heavy threshold were similar for 3- and

6-h accumulations; the maximum thresholds were about 7mm

for 3 h and 10mm for 6 h (Figs. 2c,d), and the values in South

China and the middle and lower reaches of the YRB were

similar, with corresponding thresholds of 5–7 and 6–10mm,

respectively. The medium/heavy thresholds at most stations in

the western region were less than 3mm for 3-h and 4mm for

6-h accumulation (Figs. 2c,d). The topography and latitude are

the major factors which determine the thresholds. For exam-

ple, thresholds in Yungui Plateau and Sichuan basin were

similar, North China had similar thresholds with Northwest

China. These results are consistent with the geographic dis-

tributions of precipitation climatology obtained in previous

studies (Yu et al. 2007; He and Zhang 2010; Li et al. 2015),

indicating that the criteria used reflect the climatology of

the stations, and so these station-dependent thresholds will

produce a more practically applicable verification than apply-

ing one threshold to all stations in China.

Based on these thresholds, precipitation forecasts from the

ECMWF operational model were evaluated using various

methods (Table 3). The categorical evaluation includes the TS,

ETS, special miss ratio (SMR), special false alarm ratio

(SFAR), and bias score (BS), and the continuous analysis in-

cludes the mean error (ME), and normalized root-mean-

square error (NRMSE).

1) THREAT SCORE AND EQUITABLE THREAT SCORE

The TS is also known as the critical success index. As shown

in Table 2, NA is the number of hits, NB is the number of false

alarms, and NC is the number of misses. A higher TS means a

better performance. The ETS includes all the situations in

Table 2; ND is the number of correct negatives and Nref is the

number of possible correct forecast under random conditions.

The ETS expresses the hit rate and the total numbers of rain-

fall, relative to random incidents.

FIG. 7. Number of special false alarm events: (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168.
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2) SPECIAL MISS RATIO AND SPECIAL FALSE

ALARM RATIO

The miss and false alarm ratios are important for ana-

lyzing incorrect forecasts (Rossa et al. 2008; Huang and

Luo 2017). Missing heavy precipitation can make disasters

more serious; for example, the ECMWF model missed the

heavy rainstorm in Fujian Province on 7–8 May 2016,

which induced a landslide and 41 deaths (Dai et al. 2016).

Generally, the heavier the precipitation, the more difficult it is

to predict, and the more likely it is that extreme precipitation

events are missed (Lu et al. 2013; Mao et al. 2016). To further

verify the predictive capabilities of the ECMWF model for

heavy precipitation, this study evaluated two particular situa-

tions that could lead to a more impact on the heavy precipi-

tation prediction.

The first situation is where heavy precipitation is observed,

but the forecast precipitation is 0mm, so that the model does

not predict the heavy precipitation at all: this situation is de-

fined as a special miss, NSA is the total number of heavy pre-

cipitation hits, NSC is the total number of heavy precipitation

misses (Table 3). The second situation is where heavy precip-

itation is predicted, but observed precipitation is 0mm. This

situation is defined as a special false alarm. As a heavy pre-

cipitation alarm is issued by CMA in this case, the special false

alarm is likely to cause economic losses. Here, NSB is the total

number of heavy precipitation false alarms (Table 3). Both the

SMR and the SFAR are used to evaluate incorrect forecasts of

heavy precipitation.

3) BIAS SCORE

The BS quantifies the ratio of the number of forecast events

to the number of observed events (Haiden et al. 2012). BS was

calculated for precipitation thresholds of light, medium and

heavy precipitation in this evaluation. BS varies from 0 to in-

finity, with a full score of 1.

4) MEAN ERROR AND NORMALIZED ROOT-MEAN-
SQUARE ERROR

The ME is defined as the mean of the forecast precipitation

minus observed precipitation (Hong 2003; Chien et al. 2006),

which represents the bias between the forecast and the ob-

servations. In the expression forME in Table 3, Fi indicates the

model precipitation, Oi indicates the observed precipitation,

and N is the number of the precipitation.

The RMSE is a statistical measure of the error between

the observations and the forecast that has been used by

many previous studies (Hong 2003; Chien et al. 2006; Su

et al. 2014). To compare the relative forecast errors for

different precipitation categories at each station, the sta-

tion climatology must be eliminated, so the NRMSE is

defined as the root-mean-square error at the station di-

vided by its threshold for medium/heavy precipitation (R).

Additionally, in order to investigate the spatial distribu-

tion of poor performing stations, the stations with the

top 10% highest NRMSE in each precipitation category

are selected to reveal the geographic characteristics of

highest NRMSE.

FIG. 8. Spatial distribution of SMR: (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.
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In this study, the 3-h threshold was applied to forecasts for

days 1–3 and the 6-h threshold to forecasts for days 4–7. To

further understand the performance from day 1 to day 3, the

scores computed for each contingency table of separate 3h time

periods for days 1–3, and then averaged for day 1, day 2 and day 3,

respectively. The scores computed for each contingency table of

separate 6 h time periods for days 4–7, and then averaged as a

whole. The following analysis refers to 0–24, 24–48, 48–72 and 72–

168h, respectively, as the first, second, third, and fourth periods.

3. Results

a. Spatial distribution of precipitation

Figure 3 illustrates the total number of precipitation events

and the proportion of the three categories. This shows that

the numbers of precipitation events in the southern region

of China were higher than those in the northern region. In

particular, the Sichuan basin, the Yungui Plateau, and the

middle and lower reaches of the YRB had higher times, while

the western part of Inner Mongolia Autonomous Region

(hereafter referred to as Inner Mongolia) and Xinjiang Uygur

Autonomous Region (hereafter referred to as Xinjiang) had

the lowest times (Fig. 3a). The distribution was consistent with

the precipitation climatology of 1982–2012 shown by Li et al.

(2015). The proportion of light precipitation is lower than 40%,

the middle and lower reaches of YRB had lowest proportion,

about 10%–25% (Fig. 3b). The proportion of medium and

heavy precipitation was different to that of light precipitation

(Figs. 3b–d). The highest proportion of medium precipitation,

about 55% appeared over the middle and lower reaches of

YRB, northwest China and South China (Fig. 3c). South China

had the lowest proportion of heavy precipitation (Fig. 3d). In

summary, the number in the southern region of China was

higher than that in the northern region, and the lowest was in

southern Xinjiang.

b. Threat score and equitable threat score of ‘‘rain or no
rain’’ events

The ability to forecast the occurrence or nonoccurrence of

rain is a crucial factor in numerical modeling and operational

forecasting. The geographic distribution of TS for ‘‘rain or no

rain’’ events was similar over days 1–3 (Figs. 4a–c). The TS in

the eastern region of China was relatively high, especially in

the middle and lower reaches of the YRB, where it was higher

than 0.3. The TS in the western region of China was generally

lower than in the eastern region, which is consistent with the

results of Zhang et al. (2014). The TS in southern Xinjiang was

the lowest, with values around 0.1. The high-value region of the

ETS for ‘‘rain or no rain events’’ was similar to that of the TS

(Fig. 5); both were located in the middle and lower reaches of

YRB, while low values appeared over the Yungui Plateau and

South China. The ETS of ‘‘rain or no rain events’’ decreased

with lead time. In conclusion, the ECMWF model showed

different skill in the regions with similar thresholds between

the middle and lower reaches of the YRB and South China.

The model performed best in the middle and lower reaches of

FIG. 9. Spatial distribution of SFAR: (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.
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the YRB in the eastern region of China and worst in South

China. The possible reasons for this result can be understood by

further studying the characteristics of atmospheric circulation

and the underlying surface effects in different regions of China.

c. Special miss ratio and special false alarm ratio

Figure 6 shows the spatial distribution of the number of

special misses. In the first three periods, the number and range

of special misses increased with lead time, especially in the

lower reaches of the YRB, North China, Northeast China, and

the Tibetan Plateau, and the number of special misses in the

Yungui Plateau was the lowest in the southern region of China

(Figs. 6a–c). In the fourth period, the number of special misses

was more than 60 in the northeast China, followed by eastern

Huang–Huai River basin and the lower reaches of the YRB, and

the lowest numbers occurred in South China and the southern

Yungui Plateau (Fig. 6d). Figure 7 shows the spatial distribution

of the number of special false alarm. The number was higher in

the southern region of China than in the northern region in the

four evaluation periods. There was a considerable different

number between the special miss and the special false alarm,

that is, the number of special false alarm did not increase with

the lead time, and the high-number area of special false alarm

was in southwestern China in all evaluation periods.

The SMR in China generally decreased from the northern

region to the southern region and increased with lead time

(Fig. 8). The SMR in southern Xinjiang was highest in all

evaluation periods, indicating that the prediction of heavy

rainfall in this area is very difficult. However, in the past, little

attention has been paid to heavy rainfall in Xinjiang, and the

major characteristics of heavy rainfall and their formation

mechanisms in Xinjiang should be studied in the future. The

SMR in the middle and lower reaches of the Yellow River and

Inner Mongolia increased considerably in the third period

(Fig. 8c), and the SMR in some regions of northern China in-

creased to more than 0.5 in the fourth period (Fig. 8d).

Comparing the number of special misses and the SMR, it was

found that the SMR was not high in some areas with high

number of special miss in eastern China, because there were

more heavy rainfall events (Fig. 3d).

Unlike the situation for special misses, the number of special

false alarm was higher in the Yungui Plateau (Figs. 6 and 7).

However, the spatial distributions of special false alarm and

SFAR are different (Figs. 7 and 9). The South China, the Yungui

Plateau, and the western part of China, had a higher SFAR in the

first period and the second period (Figs. 9a,b). In the third period,

there was a large area with SFAR values higher than 0.8 (Fig. 9c).

In the fourth period, the range of the large-value area of SFAR

further expanded, and the SFAR in Huang–Huai River basin

increased considerably, the SFAR values for all stations were

higher than 0.8, expect the lower reaches of the YRB (Fig. 9d).

d. Bias score

The BS is the ratio of the forecasted number to observed

rainfall events. BS , 1 indicates underestimation tendency,

and BS . 1 indicates overestimation tendency.

FIG. 10. Distribution of BS for precipitation ($light precipitation threshold): (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.
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ECMWF model overestimated precipitation ($light pre-

cipitation threshold) in whole China in all estimation periods,

and the BS decreased with lead time (Fig. 10). During the first

three periods, the stations with BS values more than 3 were

concentrated in the Yungui Plateau, South China, and the

western region (Figs. 10a–c). Themiddle and lower reaches of

the YRB has lowest BS values in all estimation periods.

ECMWF model is better at predicting precipitation ($light

precipitation threshold) in the middle and lower reaches of

the YRB. The BS values remained above 1 in the southern

region for all periods (Fig. 10). Previous studies have shown

that the ECMWF model overestimates light rainfall (Haiden

et al. 2012; Pan et al. 2017b), which is consistent with the

results of this study. For precipitation ($medium precipita-

tion threshold), the distribution of BS were same as precipi-

tation ($light precipitation threshold), but the BS values

were relative lower than that of light precipitation (Fig. 11).

Stations with BS above 3 are still concentrated in the Yungui

Plateau and South China.

The BS values for heavy precipitation were less than 2 at

most stations in all evaluation periods, especially in the South

China (Fig. 12). Comparing with the light and medium precipi-

tation, the overestimation tendency for heavy precipitation is

weaker. The underestimation tendency in South China

with BS less than 1, increased considerably with lead time.

In the first period, stations with BS values higher than 2

were only distributed across Bohai Bay and the Yungui

Plateau (Fig. 12a). During the second and three period, the BS

in South China decreased considerably (Figs. 12b,c). In the

fourth period, the BS values of stations in South China were

considerably less than 1, which indicated that the heavy rainfall

in South China was underestimated seriously. The underesti-

mation of heavy precipitation became worse with lead time.

Some previous studies have also shown that the ECMWF

model underestimates heavy precipitation and this underesti-

mation becomes worse with increasing lead time (Haiden et al.

2012; Pan et al. 2017b; Fu et al. 2014). However, BS only give

the tendency of overestimation or underestimation for differ-

ent categories of precipitation, ME could reveal detail infor-

mation of overestimation or underestimation.

e. Mean error

The above analyses of TS, ETS, and BS reveal the basic

performance of the model precipitation forecast, but the con-

tinuous error has not been revealed. Therefore, continuous

estimation methods, the ME and the NRMSE, are evaluated

here. The larger the absolute value of theME and theNRMSE,

the worse the performance of the model in predicting

precipitation is.

The BS analysis indicated that light precipitation was greatly

overestimated in whole China. The spatial distribution of the

ME for light precipitation in most parts of China ranged from 0

to 3mm, and the ME in southern China was remarkably larger

than in northern China. In South China, the ME at most sta-

tions was greater than 1mm, and the maximum of the ME was

2–3mm. In northern China, apart from Bohai Bay, where it

FIG. 11. Distribution of BS for precipitation ($medium precipitation threshold): (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.
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was 1–2mm, the ME at most stations was less than 1mm. The

ME for light precipitation was positive over the whole of

China, which means the overestimation was considerable for

some light precipitation events. The geographical distribution of

theME for light precipitation found in this studywas the same as

that found by Zhang et al. (2017). For medium precipitation, the

ME in the southern region was generally higher than in the

northern region, and that in the eastern region was generally

higher than that in the western region (Fig. 13b). The maximum

positive error was between 1 and 2mm in the middle and lower

reaches of the YRB and the Yungui Plateau. The maximum

negative error, between approximately 21 and 20.5mm, ap-

peared in the central part of Xinjiang.

The negative ME for heavy precipitation was considerably

greater than that for the other two categories (Fig. 13), which

also indicates that the model considerably underestimates

heavy precipitation in China (Fig. 12). Some studies have

revealed that the ECMWF model is poor at forecasting

heavy rainfall (Accadia et al. 2005; Haiden et al. 2012; North

et al. 2013). The distribution of the ME for heavy precipi-

tation shows that error increased from the western region to

the eastern region (Fig. 13c). The ME in the western region

was between about 25 and 0mm, and that in the eastern

region was between25 and220mm because the amount and

the numbers of precipitation were higher in the eastern re-

gion than in the western region. The maximum negative ME,

from about 215 to 220mm, occurred in South China, fol-

lowed by from about210 to215mm in North China and the

middle and lower reaches of the YRB, and the Yungui

Plateau was from about 24 to 212mm. It is clear that un-

derestimation of heavy precipitation by the model was more

serious in North China and South China than in other regions

of China.

The reason of underestimation of heavy precipitation is

complicated, and convective parameterization in model may

impact the precipitation prediction seriously. Model precipi-

tation is an average value in the grid box. Localized extreme

values in precipitation totals are systematically underestimated

because of the resolution and also the related parameterization

of convection. The design of convective parameterization faces

the difficulty of separating convective and nonconvective

processes (Yano et al. 2003; Piriou et al. 2007). Detail is lost

within the grid box due to subgrid variability, particularly in

convective situations when the individual showers might be

heavy but the displayed average precipitation is low. This leads

to an overestimate of coverage, and an underestimate of het-

erogeneity and maximum intensity.

The above analysis shows that the model generally overes-

timates light precipitation and medium precipitation and un-

derestimates heavy precipitation in whole China, which is

consistent with previous evaluations of the ECMWF model

(Fu et al. 2014; Moore et al. 2015). For light precipitation and

medium precipitation, the areas with considerable overesti-

mation areas were in southern China, while the areas with

considerably underestimated heavy precipitation were South

China and parts of North China.

FIG. 12. Distribution of BS for precipitation ($heavy precipitation threshold): (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.
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f. Normalized root-mean-square error

The precipitation number and total precipitation amount

varied greatly between different regions of China (Fig. 3). For

example, the absolute value of the ME in South China was

higher than that in North China (Fig. 13), which seems to

suggest that the performance of the model in North China is

better than that in South China. However, due to the high in-

tensity of precipitation events in summer in North China, it is

difficult to forecast precipitation (Tao 1980). The performance

of the model in different regions cannot be compared without

considering the climatology. The NRMSE is the RMSE di-

vided by the threshold for distinguishing medium and heavy

precipitation at each station (Fig. 2), which eliminates the in-

fluence of the climate at the station (Table 3).

Figure 14 shows that theNRMSE of light precipitation in the

eastern region was generally greater than in the western

region. The relatively higher NRMSE stations were scat-

tered during the first three periods, and the stations with

high values greater than 1.2 were concentrated in North

China. In the fourth period, the high NRMSE areas were

relatively more concentrated, but most of the stations had

values less than 1.0 (Fig. 14d), which means the RMSE

values at these stations were less than the threshold between

medium and heavy precipitation. For medium precipitation,

the distribution of the NRMSE was similar to that for light

precipitation (Fig. 15). It was higher in the eastern region

than in the western region, and the high-value areas were

North China, the middle and lower reaches of the YRB, and

the Sichuan basin. During the first period, the NRMSE

values at eastern stations were mostly less than 1.0 (Fig. 15a).

From the second to fourth period, the number of stations

with an NRMSE greater than 1.0 increased considerably,

mainly in the Huang–Huai River basin and North China, as

well as in the Sichuan basin (Fig. 15b).

The NRMSE values for heavy precipitation were consid-

erably higher than those for light and medium precipitation,

but the values and ranges did not increase with lead time

(Fig. 16). China is located in the East Asian monsoon region,

with complex terrain and severe convective precipitation in

summer (Tao and Chen 1987), so the accurate prediction of

heavy precipitation is very difficult. In general, the NRMSE

of heavy precipitation in the eastern region was higher than

that in the western region, and the NRMSE values in the

eastern region were greater than 2.5. North China, the

Sichuan basin, and the Yungui Plateau had higher NRMSE

values that changed little with lead time (Fig. 16). The com-

plexity of the topography and the influence of systems in the

Sichuan basin may be important reasons that the model had

poor forecasting performance for rainstorms in the Sichuan

basin (Zong et al. 2013).

To further understand the geographical distribution of the

maximum error for the three precipitation categories, Fig. 17

shows the distribution for the three categories where the

NRMSE reached the 90% quantile of all 2411 station values.

The results show that the prediction error of the ECMWF

model for North China, the Huang–Huai River basin, and the

Yungui Plateau was high in each precipitation category, and

higher than in other regions of China.

4. Conclusions and discussion

The high-spatiotemporal-resolution ECMWF model pre-

cipitation from March to September during 2015–18 was

evaluated using hourly observation CMA precipitation data

from 2411 national stations. Due to the great variations in

precipitation climatology between different regions of China,

the classification criteria of 3- and 6-h accumulated precipita-

tion at each station were obtained using the SEEPS method.

The threshold obtained by this method takes into account the

climatological characteristics of different regions. Based on the

threshold, the observed precipitation was divided into three

types, light, medium, and heavy, and the accuracy of the pre-

cipitation forecasts of the ECMWF model in China was eval-

uated. The main findings can be summarized as follows.

In general, the middle and lower reaches of the Yangtze

River basin had similar threshold with South China, the

FIG. 13. Distribution of ME for different categories of precipi-

tation (mm): (a) light precipitation, (b) medium precipitation, and

(c) heavy precipitation.
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FIG. 14. Distribution of NRMSE for light precipitation: (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.

FIG. 15. Distribution of NRMSE for medium precipitation: (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.
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FIG. 16. Distribution of NRMSE for heavy precipitation: (a) 0–24, (b) 24–48, (c) 48–72, and (d) 72–168 h.

FIG. 17. The stations with the top 10% highest NRMSE in each precipitation category. Red spots represent heavy precipitation,

orange spots represent medium precipitation, and blue spots represent light precipitation: (a) 0–24, (b) 24–48, (c) 48–72, and

(d) 72–168 h.
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thresholds in the Yungui Plateau were similar with Sichuan

basin, while those of North China and Northwest China are

close. The ECMWF model had better forecast skills in the

middle and lower reaches of the YRB than in South China,

model showed better predication skills in northwest China than

in North China.

The results for the TS and the ETS of ‘‘rain or no rain’’

generally suggest that the best performance appeared in the

middle and lower reaches of the Yangtze River basin, and the

scores in South China and southwestern China were lower than

those in other regions in eastern China. The shorter the lead

time, the better the forecast accuracy. The number of special

misses in eastern China was higher than in other regions, but

the SMR in the northern regionwas higher than in the southern

region, and it gradually decreased going from north to south.

The number of special false alarms was highest in southwestern

China, and the SFAR was higher in the western China, the

Huang–Huai River basin, and Inner Mongolia. The results

show that, for heavy precipitation, the miss ratio and false

alarm ratio were mainly higher in northern China and

western China.

The distributions of the BS, the ME and the NRMSE of the

model precipitation show that the prediction error increased

with lead time. Generally, the model overpredicted light and

medium precipitation, but underpredicted heavy precipitation.

Model precipitation is an average value in the grid box and the

related parameterization of convection lead to a systematic

underestimate of heavy precipitation intensity. The geo-

graphical distribution of the NRMSE shows that the highest

forecast errors occurred in North China, the Huang–Huai

River basin, and the Yungui Plateau.

On the basis of the present study, it can be explained that

the ECMWF model misses more heavy precipitation in the

northern region than that in the southern region of China, but

the number of false alarms of heavy precipitation is highest in

southwestern China. This may be due to the complex topog-

raphy of the southwesternmountainous area, North China, and

theHuang–Huai region (Chen et al. 2012; Sun and Zhang 2012;

Bao and Zhang 2013). In addition, it will also be useful to study

the errors in precipitation forecasts under different circulation

situations, and this will form the basis of future work.
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