

不同类型华南暖区暴雨过程的环流特征

刘瑞鑫 孙建华 傅慎明

Comparison of Synoptic Circulation Characteristics in Different Types of Warm-Sector Heavy Rainfall Events over South China

LIU Ruixin SUN Jianhua FU Shenming

在线阅读 View online: https://doi.org/10.3878/j.issn.1006-9585.2021.20105

您可能感兴趣的其他文章 Articles you may be interested in

佛山地区不同类型雷暴过程大气重力波的频谱动态特征研究

Frequency Spectrum Dynamic Characteristics of Atmospheric Gravity Waves during Various Types of Thunderstorms in Foshan 气候与环境研究. 2021, 26(3): 250 https://doi.org/10.3878/j.issn.1006-9585.2020.20047

年华北地区持续霾事件的特征及其环流分类研究

_

气候与环境研究. 2019, 24(3): 341 https://doi.org/10.3878/j.issn.1006-9585.2018.18016

中国东北暖季气温变化特征及其与海温和大尺度环流的关系

Variability of Warm Season Surface Air Temperature over Northeastern China and Its Relationships with Sea Surface Temperature and Large-scale Atmospheric Circulation Pattern

气候与环境研究. 2018, 23(4): 479 https://doi.org/10.3878/j.issn.1006-9585.2018.17085

2017年广东西部一次暖区极端降水过程的维持机制及微物理特征

Maintenance Mechanism and Microphysical Characteristics of an Extreme Intensity Precipitation in Warm Are in Western Guangdong in 2017 气候与环境研究. 2021, 26(3): 263 https://doi.org/10.3878/j.issn.1006-9585.2020.20028

法对北京小时强降水扰动环流场的分型研究

Anomaly-Based Classification Study of Synoptic Patterns Associated with Hourly Heavy Rainfall over Beijing by SANDRA Method 气候与环境研究. 2019, 24(4): 445 https://doi.org/10.3878/j.issn.1006-9585.2018.18046

1979~2015年青藏高原低涡降水特征分析

Analysis of Characteristics of Low Vortex Precipitation in the Tibetan Plateau from 1979 to 2015 气候与环境研究. 2019, 24(1): 105 https://doi.org/10.3878/j.issn.1006-9585.2018.17116

关注微信公众号,获得更多资讯信息

刘瑞鑫, 孙建华, 傅慎明. 2021. 不同类型华南暖区暴雨过程的环流特征 [J]. 气候与环境研究, 26(4): 359-373. LIU Ruixin, SUN Jianhua, FU Shenming. 2021. Comparison of Synoptic Circulation Characteristics in Different Types of Warm-Sector Heavy Rainfall Events over South China [J]. Climatic and Environmental Research (in Chinese), 26 (4): 359-373. doi:10.3878/j.issn.1006-9585.2021.20105

不同类型华南暖区暴雨过程的环流特征

刘瑞鑫1 孙建华2,3 傅慎明2

1 北京市气象台,北京 100089
 2 中国科学院大气物理研究所云降水物理与强风暴实验室,北京 100029
 3 南方海洋科学与工程广东省实验室(珠海),广东珠海 519080

摘 要 在对 34 年华南暖区暴雨的筛选和客观分类研究的基础上,继续深入研究不同类型暖区暴雨的环流特征 与对流发生环境变量特征的异同。主要结果如下:大部分切变线型、低涡型和回流型暖区暴雨个例的环境场斜压 性较强,其中回流型暖区暴雨在关键区斜压性最强,而南风型暖区暴雨个例的环境场斜压性相对较弱;所有类型 暖区暴雨发生时对流层中高层的中纬度基本为平直西风气流控制,降水区主要位于西风带短波槽槽前,低层均有 低空急流的影响。各类暖区暴雨的主要差异在于高层南亚高压、中层短波槽和副热带高压的位置和强度差异以及 低层低空急流的位置、强度、风向和水汽输送条件的不同。切变线型暖区暴雨发生时 0~3 km 垂直风切变最强, 低涡型暖区暴雨对流有效位能最大,两类南风型暖区暴雨的动力和热力强迫都较弱,对其发生发展机理需要开展 更深入研究。

关键词 暖区暴雨 环流特征 斜压性 低涡 回流
 文章编号 1006-9585(2021)04-0359-15
 中图分类号 P445
 文献标识码 A
 doi:10.3878/j.issn.1006-9585.2021.20105

Comparison of Synoptic Circulation Characteristics in Different Types of Warm-Sector Heavy Rainfall Events over South China

LIU Ruixin¹, SUN Jianhua^{2, 3}, and FU Shenming²

1 Beijing Weather Forecast Center, Beijing 100089

2 Key Laboratory of Cloud–Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

3 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong Province 519080

Abstract Based on the objective classification of warm-sector heavy rainfall events over South China, a synoptic analysis is used to study the similarities and differences between the circulation characteristics and environmental variables for the different types of warm-sector rainfall events. Results reveal that most of the shear line type, vortex type, and backflow type warm-sector rainfall events have strong baroclinic environments, with the backflow type being the strongest and the south wind type being relatively weak. All warm-sector rainfall events are controlled by the horizontal westerly airflow at the middle latitudinal area when they occurred. The precipitation area is mainly located in front of the

收稿日期 2020-08-14; 网络预出版日期 2021-03-07

作者简介 刘瑞鑫,女,1990年出生,博士,主要从事中尺度天气分析和模拟研究。E-mail: liuruixin.123@163.com

通讯作者 孙建华, E-mail: sjh@mail.iap.ac.cn

资助项目 国家重点研发项目 2019YFC1510400,国家自然科学基金项目 41675045,中国气象局预报员专项项目 CMAYBY2020-001

Funded by National Key Research and Development Program of China (Grant 2019YFC1510400), National Natural Science Foundation of China (Grant 41675045), Key Research Program of Forecaster, China Meteorological Administration (Grant CMAYBY2020-001)

short-wave trough and is affected by the low-level jet at lower layers. The main differences between the different types of warm-sector rainfall events are the location and intensity of the South Asia high, middle-level wave trough, western Pacific subtropical high, and low-level jet, and the difference between the wind direction and water vapor condition. Different types of warm-sector rainfall events exhibit differences between the environmental variables. The shear line warm-sector rainfall has the strongest vertical wind shear (0-3 km) in five types, and the vortex type has the largest convection effective potential energy. The dynamic and thermal forces of the two types of southerly warm-sector rainfall events are the weakest among all types of warm-sector rainfall events. The mechanism of its occurrence and development needs to be further studied.

Keywords Warm-sector heavy rainfall, Synoptic circulation characteristic, Environmental variable, Vortex, Backflow

1 引言

华南地区是我国暴雨的频发区之一(陶诗言, 1980), 华南暖区暴雨降水强度大, 雨量相对集中, 一般是指发生在距地面锋面 200~300 km 暖区一侧 的降水,或是南风控制的暖区降水,并且降水往往 集中在几个小时内,范围比锋面暴雨小,尺度一般 只有几十到几百公里(黄士松等, 1986; 林良勋, 2006; 伍志方等, 2018)。暖区暴雨非常容易引发洪 涝等灾害, 1994年6月在珠江流域发生了1915年 以来华南最严重的洪水,这次洪涝主要为暖区暴雨 引发(陶诗言, 1996;孙建华和赵思雄, 2000)。 Sun et al. (2019) 和谌芸等(2019) 对暖区暴雨的 研究进行了回顾, 华南地区的暖区暴雨天气尺度斜 压性强迫弱、环境大气热动力不稳定条件弱,在华 南特殊地形和海陆热力差异等外强迫作用下形成, 因此,目前对暖区暴雨发生的环流背景条件和中尺 度对流系统的触发机理仍然不是非常清楚,数值模 式对暖区暴雨的预报能力十分有限,业务预报的难 度也较大,需要继续进行深入的研究(何立富等, 2016; Luo et al., 2016; 田付友等, 2018)。

对华南前汛期暖区暴雨的环流特征,已经有不 少研究工作。黄士松等(1986)指出华南暴雨期间 赤道西风和越赤道气流汇合成偏南风的辐合渐近线, 为华南前汛期暴雨输送了水汽和能量。锋面降水和 暖区降水在华南除分别发生外,还常常同时发生呈 现双雨带特征。Du and Chen(2018,2019)对同时 出现在华南内陆的锋面降水和沿海的暖区强降水过 程进行了研究,发现天气尺度低空急流与华南内陆 锋面暴雨的增强有关,而边界层急流则对海岸暖区 暴雨的形成和加强有重要作用,并提出了双低空急 流配合对暖区暴雨对流触发的概念模型。Zhang and Meng(2019)的研究发现模式对有急流的暖区 暴雨预报技巧更低。

关于华南暖区暴雨形成的环流特征已经开展过 一些统计和分类工作(丁治英等,2011;陈翔翔等, 2012;何立富等,2016),但这些研究存在研究时间 段偏短,标准不统一的问题。基于前人的研究工作, 刘瑞鑫等(2019)提出华南暖区暴雨定量筛选标准, 并对 1982~2015年的暖区暴雨进行了筛选和统计 特征分析,将影响华南暖区暴雨过程形成的环流特 征分为4类:切变线型、低涡型、南风型和回流型, 研究中还发现不同类型的暖区暴雨对华南地区的内 陆和沿海的影响不同,南风影响下的暖区暴雨发生 频率较高,影响较大。

一些研究对不同类型暖区暴雨的环流特征进行 了总结。丁治英等(2011)认为5~6月华南所有 暖区暴雨在对流层低层均处在南风辐合区中。陈翔 翔等(2012)统计中发现南海夏季风爆发前暖区暴 雨发生较少,而季风爆发后暖区暴雨发生较多。何 立富等(2016)提炼了边界层辐合线型、偏南风风 速辐合型以及强西南风急流型华南暖区暴雨3类华 南暖区暴雨的天气系统结构配置和触发因子,并且 指出低空急流有利于降水触发, 而降水潜热释放可 使低空急流加强。叶朗明和苗峻峰(2014)指出回 流型暖区暴雨地面位于出海变性高压脊后部, 200 hPa 有强烈的高层辐散; 而锋前型暖区暴雨的 地面处于低槽中,有中尺度辐合线,低层有低空急 流出现,200 hPa 高层辐散场不明显。但上述研究 没有具体分析不同类型的暖区暴雨的三维结构和环 境场特征。

华南地区地形复杂,广东和广西地区下垫面条 件和海陆热力差异,发生在这两个地区的暴雨事件 的触发和发展也有明显差异(陶诗言,1980;夏茹娣 和赵思雄,2009; Wu and Luo, 2016)。一些观测试 验和研究表明,地形对锋面暴雨和暖区暴雨的影响 不同,前者主要表现为复杂山脉地形对冷空气南侵 的阻挡,造成华南形成多雨中心;后者主要体现在 地形对暖空气的动力抬升作用、喇叭口地形对气流 的辐合作用以及地形影响低层暖湿空气的输送上 (孙建华和赵思雄, 2000; 夏茹娣等, 2006; 夏茹娣和 赵思雄, 2009; Zhang et al., 2011; Luo et al., 2017)。 此外,海陆分布对降雨的形成、强度以及其日变化 都有明显的影响(Yu et al., 2007; Chen et al., 2014, 2015)。Chen et al. (2014, 2015)认为华南前汛期 对流和降水日变化的夜间大值区是陆风环流、山谷 风与盛行西南暖湿气流辐合抬升所致,提出低空急 流在海岸附近的增强摩擦辐合是造成夏季海岸对流 高发的主要动力机制之一(Chen et al., 2017)。 Wu et al. (2019) 指出在广东珠三角沿海地区, 城 市热岛效应和海陆风可引发暖区暴雨。

综上所述,虽然前人已经对华南暖区暴雨开展 过环流特征和中尺度对流系统的结构、触发的研究, 但华南地区受地形和海陆分布影响,在广西和广东 地区的降水特征和影响系统具有显著的差异(李德 帅, 2016; Luo et al., 2017; 刘瑞鑫等, 2019), 因而, 不同地区的暖区暴雨需要分别开展环流特征研究。 本文在刘瑞鑫等(2019)对1982~2015年华南暖 区暴雨分类研究的基础上,基于高时空分辨率的再 分析资料,利用合成和诊断分析相结合的方法,对 比研究不同类型暖区暴雨的环流特征和关键环境因 子,提炼两广地区不同类型暖区暴雨的天气学概念 模型,同时也为下一步研究不同类型华南暖区暴雨 的中尺度对流系统的发生和维持机理打下基础。

资料与方法 2

4 期

本文使用的资料为 1982~2015 年水平分辨率 为0.75°(纬度)×0.75°(经度), 垂直 24 层, 时间分辨 率为6h的ERA-Interim[European Centre for Mediumrange Weather Forecasts (ECMWF) Interim reanalysis] 再分析资料(Simmons et al., 2007),利用该资料 集进行诊断计算和环流分析。

一般而言,相对于锋面暴雨华南暖区暴雨斜压 性弱,然而,暖区暴雨的发生、演变亦会受到环境 斜压性的影响。本研究基于刘瑞鑫等(2019)挑选 的华南暖区暴雨和相关的分类结果,利用 Eady 增 长率 (Eady Growth Rate, EGR; Hoskins and Valdes, 1990) 计算不同类型暖区暴雨背景环境场斜压性。

Hoskins and Valdes (1990) 证明 EGR 能够合理地 反映天气系统的斜压性,其计算公式为:

$$EGR = 0.3098 \frac{|f| \left| \frac{\partial U}{\partial Z} \right|}{N}, \qquad (1)$$

其中,f为柯氏参数,U为纬向风,Z为高度,N 为布伦特—维萨拉频率(浮力振荡频率),

$$N = \sqrt{\frac{g\frac{\partial U}{\partial Z}}{\theta}},$$
 (2)

g为重力加速度, θ 为位温, $\partial U/\partial Z$ 是纬向风随高度 的切变。根据 EGR 的计算结果来研究不同类型暖 区暴雨的斜压性特征。具体过程如下:采用公式 (1) 计算刘瑞鑫等(2019) 挑选的 177 例暖区暴 雨事件的起始时刻 900~700 hPa、700~500 hPa、 500~300 hPa垂直积分的 EGR 值, 根据 EGR 值和 暖区暴雨降水的中心位置、分布形态,分析低、中、 高三层的 EGR 与暖区暴雨的关系。结果表明,有 48%的个例降水中心和形态分布与低层垂直积分 EGR 分布相似, 仅有 23% 和 19% 的个例与中、高 层 EGR 分布相似。这说明低层 900~700 hPa 的垂 直积分 EGR 与暖区降水分布对应好,能反映华南 暖区暴雨环境场的斜压性特征,因此,下文中对筛 选个例的低层垂直积分 EGR 进行研究。

为了挑选典型个例进行合成形势场分析,研究 不同类型暖区暴雨环流形势的三维结构特征,选取 华南地区关键区(21°N~26.25°N, 105°E~117°E) (图1中蓝色虚线方框所示),并计算该区域内低 层(900~700 hPa) 区域的平均 EGR。此外,由 于挑选出的部分切变线型和低涡型暖区暴雨的主要 影响系统位于降水区域的西北部,所以对这两类暖 区暴雨,选取关键区域北部相同大小的区域 (26.25°N~31.5°N, 105°E~117°E)(图1红色 虚线方框所示,称为北部关键区)同样进行上述的 计算,以对这两类暖区暴雨的影响系统进行补充研究。

四类暖区暴雨的斜压性特征 3

前面的分析已经指出,低层 900~700 hPa 的 垂直积分 EGR 能较好地反映华南暖区暴雨环境场 斜压性特征。为了揭示4类暖区暴雨的斜压性特征, 分别对每一类华南暖区暴雨个例进行 EGR 分析, 并对每类进行合成,由于个例降雨区域的差异,合

Fig. 1 Topographical distribution in southern China (blue rectangle represents the key area of South China and red rectangles represent the north key area)

成分析的特征不如个例清楚,因此,选取4类典型 暖区暴雨个例 900~700 hPa 的 EGR 分布进行具体 分析(图2),其他同类个例的特征是基本相似的。 其中切变线型和低涡型暖区暴雨个例的降水中心均 位于 EGR 的大值区内(图 2a 和 2b), EGR 的最 强中心都大于 8×10⁻⁶ s⁻¹。回流型暖区暴雨在广东 沿海附近有一个 EGR 大值中心,中心值在 7×10^{-6} s⁻¹ 左右(图 2d),表明这三类个例的环境场斜压性 较大。南风型暖区暴雨的 EGR 特征则呈现出与上 述三类暴雨显著不同的特征,其环境场的 EGR 较 其他三类弱得多(图 2c),且降水中心不位于 EGR 的大值区,说明华南南风型暖区暴雨环境场 的斜压性相对较弱。为了挑选不同类型暖区暴雨的 典型个例进行下一步的合成分析,首先计算177例 暖区暴雨在华南关键区域的 ERG 平均值,并且与 每个个例的 EGR 关键区域平均值进行比较。由于 切变线型和低涡型暖区暴雨的主要影响天气系统离 暖区降水有一定距离,位于降水的北部,所以对北 部关键区也进行 EGR 平均值的计算。

根据 EGR 的计算结果得到, 177 例暖区暴雨

在华南关键区域(后文简称关键区)内 EGR 平均 值为4.31×10⁻⁶ s⁻¹。切变线型和低涡型暖区暴雨的 个例在北部关键区域 EGR 的平均值为 4.74×10^{-6} s⁻¹, 有 29 例切变线型暖区暴雨在北部关键区域的 EGR 值大于该区域平均值 $(4.74 \times 10^{-6} \text{ s}^{-1})$, 占到该类 暖区暴雨的 78.38%, 这其中有 24 例在关键区的 EGR 大于平均值 $(4.31 \times 10^{-6} \text{ s}^{-1})$; 有 24 例低涡 型暖区暴雨在北部关键区的 EGR 大于该区域的平 均值,占到低涡型暖区暴雨的 52.17%,其中 15 例 在关键区的 EGR 大于其平均值。8 个回流型暖区 暴雨事件在华南区域的 EGR 都大于关键区平均值 (4.31×10⁻⁶ s⁻¹), 主要是由于回流型暖区暴雨主 要发生在4月至5月中上旬,海上和陆地的温度梯 度较大,所以斜压性较强。对于南风型暖区暴雨而 言,其环境场斜压性总体偏弱,约有 53.5% 的个 例小于关键区 EGR 的平均值,而这些个例是南风 型暖区暴雨研究重点。

为了使得做合成分析的个例具有共性,基于不 同类型暖区暴雨 EGR 的分布特征,主要考虑影响 区域和起始时间不同,挑选不同类型暖区暴雨的特

图 2 华南四类典型暖区暴雨个例的 700~900 hPa 垂直积分 EGR 分布(阴影):(a) 切变线型(2008 年 7 月 22~23 日);(b) 低涡型(2000 年 6 月 21 日);(c) 南风型(2012 年 6 月 24 日);(d) 回流型(2013 年 5 月 8 日)。红色圆点为降水中心的位置,红色方框为 华南关键区域

Fig. 2 Distributions of the vertical-integrated Eady Growth Rate (EGR) from 700 to 900 hPa of the four categories of the typical warm-sector rainfall events over the South China (shadings): (a) Shear line type (22–23 Jul 2008); (b) low-vortex type (21 Jun 2000); (c) south wind type (24 Jun 2012); (d) backflow types (8 May 2013). The red dot is the center of the rainfall area and the red box is the key region

征相似个例进行合成分析。其中切变线型和低涡型 暖区暴雨主要影响区域为广西地区,回流型暖区暴 雨主要发生在广东沿海(刘瑞鑫等,2019)。个例 的挑选标准如下:对于非南风型(切变线型、低涡 型、回流型)暖区暴雨(表1),首先选择个例的 关键区 EGR 值大于 177 例 EGR 平均值(4.31× 10⁻⁶ s⁻¹),且离降水中心 200 km 范围内的斜压性 较强的个例。考虑降水日变化差异,切变线型和低 涡型个例再次筛选出发生在广西地区,且起始时间 差不超过 6 h 的事件作为典型个例,回流型由于个 例数较少,且起始时间相差不超过 12 h,因此,8 例个例都作为合成研究的对象;南风型暖区暴雨选 择 EGR 值小于 177 例 EGR 平均值(4.31×10⁻⁶ s⁻¹), 且距降水中心 200 km 内斜压性较弱的个例为典型 个例。南风型暖区暴雨背景场为广阔的南风,没有 其他明显天气系统影响,且挑选出的该类个例数目 较多,降水落区差异较大,所以在后面的合成研究 中各选取发生在广东省、广西省两省环境场斜压性 较弱,起始时间相差不超过 6 h 的暖区暴雨事件为 典型个例(表 2)。

挑选的几类暖区暴雨典型个例的降水合成分布 见图 3。切变线型暖区暴雨落区主要集中在广西北 部以及其沿海地区;低涡型暖区暴雨落区主要在广 西沿海地区,内陆地区降水量偏小;回流型暖区暴 雨落区主要分布在广东珠三角区域;广东地区的南 风型暖区暴雨落区在广东沿海及其中北部地区;广

表1 华南区域非南风型暖区暴雨典型个例

Table 1 Typical events of non-south wind warm-sector

heavy rainfall over South China					
暖区暴雨类别	年份	日期	降水落区	降水强度/mm	
切变线型(9例)	1990	4月9日	广西沿海	132.2	
	1991	6月8日	广西沿海	112.4	
	1995	5月27日	广西内陆	126.7	
	1997	4月1日	广西内陆	118.6	
	1997	5月5日	广西沿海	89.2	
	1999	7月20~21日	广西内陆	157.5	
	2004	7月10日	广西沿海	320.3	
	2004	7月20日	广西沿海	151.1	
	2008	7月22~23日	广西内陆	86.7	
低涡型(8例)	1983	6月22日	广西内陆	115.8	
	2000	6月21日	广西内陆	98.3	
	2003	6月20日	广西内陆	134.1	
	2006	7月16~17日	广西沿海	393.1	
	2009	7月5日	广西沿海	132.9	
	2012	6月27日	广西内陆	82.6	
	2014	6月6日	广西沿海	72.4	
	2015	5月8日	广西内陆	86.6	
回流型(8例)	1996	4月30日	广东沿海	162.4	
	2000	4月13日	广东沿海	260.2	
	2006	5月3日	广东沿海	149	
	2010	4月29日	广东沿海	106.1	
	2013	5月8日	广东沿海	157.5	
	2013	5月9日	广东沿海	128.9	
	2014	5月8日	广东沿海	138.9	
	2014	5月9日	广东沿海	131.5	

西地区南风型暖区暴雨落区主要在广西沿海地区。 从合成降水分布看,不同类型暖区暴雨典型个例的 降水分布比较集中。下面对这些典型个例进行合成 环流形势场分析,以揭示不同类型暖区暴雨环流系 统的主要特征以及差异,构建不同类型暖区暴雨的 天气学模型。

4 不同类型暖区暴雨的天气尺度环流 特征

为了对比不同类型华南暖区暴雨的环流形势、 影响天气系统特征的异同,利用欧洲中心水平分辨 率 0.75°(纬度)×0.75°(经度),每6h一次的 格点再分析资料 ERA-Interim,对非南风型(切变 线型、低涡型、回流型)典型个例(表1)和南风 型典型个例(表2)的降水起始时刻的合成环流特

表 2 华南区域南风型暖区暴雨典型个例

Table 2Typical events of south wind warm-sector heavyrainfall over South China

暖区暴雨类别	年份	日期	降水落区	降水强度/mm
广东地区南风型	1983	5月8日	广东沿海	201.1
(16例)	1984	5月14日	广东沿海	324.5
	1993	6月16日	广东沿海	116.3
	1996	5月6日	广东沿海	212.7
	1996	6月24日	广东沿海	267.3
	1997	7月6日	广东沿海	253.3
	1997	7月19日	广东沿海	98.4
	1998	4月26日	广东内陆	111.5
	2001	6月8日	广东沿海	122.7
	2001	6月11日	广东内陆	117.2
	2005	6月21日	广东内陆	288
	2011	5月8日	广东内陆	183.3
	2011	6月16日	广东沿海	234
	2012	6月22日	广东沿海	119.4
	2012	6月24日	广东沿海	95.7
	2015	5月17日	广东沿海	114.4
广西地区南风型	1988	5月16日	广西沿海	123.6
(12例)	1990	7月14日	广西沿海	283.1
	1991	6月7日	广西内陆	123.5
	1996	6月17日	广西沿海	77.5
	1997	6月7日	广西内陆	171
	1998	6月22日	广西沿海	124.8
	1998	7月5日	广西沿海	119.3
	2000	7月21日	广西沿海	97.5
	2003	6月28日	广西沿海	111.7
	2006	7月18日	广西沿海	149
	2008	6月8日	广西沿海	122.2
	2011	6月8日	广西内陆	68.9

征进行分析,通过分析 5 种类型暖区暴雨不同层次的合成环流形势得到它们的天气学模型。

发生在广西地区的切变线型暖区暴雨主要集中 在广西省北部以及其沿海地区(图 3a),200 hPa 我国上空中高纬度基本为平直气流(图 4a),不 利于中高纬度冷空气向华南地区输送,中低纬度地 区四川云南一带有一浅槽,且关键区的高度场为负 距平区(图略),即发生在广西的该类暖区暴雨其 西北部高空位势高度场较气候态偏低,降水区域的 西北部高空为辐散的大值区域,有利于上升运动的 发展。500 hPa上,我国西南部为短波槽(图 4b), 此槽较气候态显著偏强,两广地区位于槽前,有利 于对流活动和降水的发生。从对外长波辐射

图 3 华南不同类型暖区暴雨典型个例的最强时段 6 h 累积降水量分布:(a)切变线型;(b)低涡型;(c)回流型;(d)广东地区南风型;(e)广西地区南风型

Fig. 3 The strongest period of the 6-h cumulative precipitation of typical events of different types of warm-sector rainfall over South China: (a) Shear line types; (b) low-vortex types; (c) backflow warm-sector rainfall; (d) south wind types in Guangdong Province; (e) south wind types in Guangxi Zhuang Autonomous Region

(Outgoing Longwave Radiation, OLR)场分布可知, 降水区域对流异常活跃,其标准化OLR负异常中 心达-1.6。850 hPa 上降水区域的西北部地区涡度 较强(图 4c),对应了切变线的位置,降水区域 对应的上升运动较强。同时该区域有较强的低空急 流活动,有利于水汽输送至降水区域。与沿海地区 的降水相比,内陆降水区上空对应的上升运动更强, 可能为北部山区地形抬升作用的影响(夏茹娣和赵 思雄,2009)。925 hPa 降水区域以偏南风为主,有 别于 850 hPa 的西南风,风随高度的顺转表明层间 存在暖平流,有利于对流和降水发生(图 4c 和 4d)。 此外,关键区为比湿的大值中心和风速辐合,上升 运动明显,这都是有利于产生降水的条件。

发生在广西地区的低涡型暖区暴雨降水落区主要在广西沿海地区(图3b),与切变线暖区暴雨相比,广西北部的降雨较弱。200 hPa中低纬度南亚高压控制范围较切变线型更广(图5a),关键区上空为辐散区,此类暖区暴雨的高空辐散条件较切变线型偏强。500 hPa上,两广地区上空也为短波槽控制(图5b),但其强度比切变线型弱。850 hPa关键区以北涡度较强(图5c),涡旋结构清楚,关键区内的东部低空急流与上升运动均较强(图5d),广西地区对流异常活跃,其OLR 负异常中心达

-2.4 以上。与切变线型暖区暴雨相比,本类暖区 暴雨的低空急流和垂直运动强度略弱,低空急流的 位置更偏东,且主要为西南急流的影响,但水汽条 件更好。虽然己有研究提出天气尺度低空急流和边 界层急流分别与华南内陆锋面暴雨和海岸暖区暴雨 有关(Du and Chen, 2018, 2019),但在合成研究 中很难识别边界层急流,因此,这里只分析天气尺 度低空急流,并且难以明确其在海岸暖区暴雨和内 陆暖区暴雨中的不同作用,将来需要通过个例研究 来明确。

回流型暖区暴雨的降水主要分布在广东珠三角 区域(图 3c),是由变性冷高压后部气流辐合或 暖湿切变引起的暴雨,一般出现在4月初到5月中 旬(表1),该段时间内陆地开始回暖,而海面相 对较冷。对于该类暖区暴雨发生的独特条件,利用 发生在广东沿海地区8例暖区暴雨的合成环流形势 进行研究。类似于前两类暖区暴雨,本类暴雨在 200 hPa 华南上空也为平直的西风气流控制(图 6a), 高空急流相对于气候态位置偏南,影响华南地区。 500 hPa 上,以 25°N 为中心,有一西风带短波槽 影响华南(图 6b),此槽的尺度比前两类降水的 短波槽尺度要大,华南地区位于槽前,西太平洋副 热带高压(Western Pacific Subtropical High, WPSH)

366

图 4 切变线型暖区暴雨个例的合成环流形势(橘色虚线框为关键区域, c和 d 中粉色圆点代表降水中心): (a) 200 hPa 位势高度场(黑色细实线,单位: dagpm; 红色点虚线为 1981~2010 年对应时段的多年平均 1248 dagpm 和 1252 dagpm 等值线)及散度场(阴影),水平风速≥30 m/s 的高空急流区(绿色实线,绿色点虚线为 1981~2010 年对应时段的多年平均 30 m/s 等值线); (b) 500 hPa 位势高度场(黑色细实线,单位: dagpm,绿色点虚线为 1981~2010 年对应时段的多年平均 586 dagpm 和 588 dagpm 等值线)及其 1981~2010 年对应时段的距平(阴影),OLR标准化距平场(单位:W m⁻²,红色点虚线为负距平场);(c) 850 hPa 位势高度场(黑色细实线,单位: dagpm),正涡度区(阴影),风场(紫色箭头,单位:m/s;绿色实线为风速 8 m/s 和 12 m/s 等值线;红色虚线为该层垂直速度大小,单位:cm/s);(d) 925 hPa 位势高度场(黑色细实线,单位: dagpm),比湿场(阴影),风场(紫色箭头,单位:m/s;绿色实线为风速 8 m/s和 12 m/s 等值线;红色虚线为该层垂直速度大小,单位:em/s)

Fig. 4 Composite weather patterns of shear line warm-sector rainfall events (orange dashed boxes are the key areas and pink dots in Fig. 4c and Fig. 4d represent the precipitation centers): (a) 200-hPa geopotential height (black solid lines, dagpm; red dotted dashed lines indicate the climatic means of 1248- and 1252-dagpm isolines of 1981–2012), divergence (shading), and upper-level jet with wind speed $\ge 30 \text{ m s}^{-1}$ (green solid lines; green dotted dashed lines denote the climatic means of wind speed $\ge 30 \text{ m s}^{-1}$ during 1981–2010); (b) 500-hPa geopotential height (black solid lines, units: dagpm; green dotted dashed lines are the climatic means of 586- and 588-dagpm isolines, shading denotes the corresponding anomalies) and OLR anomalies (units: W m⁻², red dotted lines are negative); (c) 850-hPa geopotential height (black solid lines, units: dagpm), positive vorticity (shading), and wind vectors (purple arrows, units: m s⁻¹; green solid lines are the isolines of 8 m s⁻¹ and 12 m s⁻¹; red dotted lines correspond to this layer's vertical speed, units: cm s⁻¹; green solid lines are the isoline of 8 m s⁻¹ and 12 m s⁻¹; red dotted lines is this layer's vertical speed, units: m s⁻¹; green solid lines are the isoline of 8 m s⁻¹ and 12 m s⁻¹; red dotted lines is this layer's vertical speed, units: cm s⁻¹)

的强度较强,其主体范围远远大于气候态,但并未 进入两广地区。产生回流降水的华南沿海地区位于 副高的北侧和短波槽前,有利于上升运动的发展和 南海水汽输送到华南沿海地区。OLR 负异常中心 位于台湾海峡上空,广东地区也在对流活跃区的范 围内。对流层低层福建以东海域为高压系统(图 6d), 在其南部为较弱的偏东风回流气流,这支气流与来 自低纬度的偏南风共同为降水区输送了水汽。需要指出的是,回流气流层次浅薄,在 850 hPa上已经变成西南风为主(图 6c)。整体而言,此类暴雨的低空急流和垂直运动都较弱。

南风型暖区暴雨是挑选出来个例中数量最多的 一类,降水区域主要是受到大范围的南风控制。南 风型暖区暴雨的落区分别集中在广西和广东的沿海

Fig. 5 The same as Fig. 4, but for composite weather patterns of low vortex warm-sector rainfall events

地区(图 3d 和 3e),因此,将广东地区南风型和 广西地区的南风型暖区暴雨分别进行合成分析。广 东地区南风型暖区暴雨合成环流形势如图7,其中 200 hPa 中高纬度同样基本为平直气流(图 7a), 冷空气活动较弱,急流位置与气候态相当,并且高 空辐散场的辐散中心主要在海面上,对关键区的降 雨没有明显影响。但两广上空受弱高压脊控制,仍 有一定的弱高空辐散条件。500 hPa 上, 广东地区 处于非常弱的西风带短波槽槽前(图 7b),槽前 对应着 OLR 的一个弱负距平中心,对流层低层两 广地区水汽条件较好,降水区基本受低空急流控制 (图 7c), 尤其是 925 hPa 中的低空急流对广东沿 海地区的南风型暖区暴雨作用较为明显(图 7d)。 低空急流不仅为南风型暖区降水输送了水汽和热量, 还通过风速辐合触发和加强对流过程。这与 Du and Chen (2018, 2019) 对华南低空急流的研究结 果一致。

广西地区南风型暖区暴雨合成形势如图 8 所示, 200 hPa 中高纬度形势与广东地区南风型暖区暴雨

相似(图 8a)。在中低纬度,两类南风型暖区暴 雨存在显著差异,主要表现在广西南风型暖区暴雨 对应的南亚高压强度强,是各类暖区暴雨中最强的 南亚高压,两广地区都在其控制范围之内,广西南 风型暖区暴雨高空辐散条件比广东型更好。500 hPa 上,四川和云南附近有弱西风带短波槽(图 8b), 广西位于此槽槽前,而广东地区则受比气候态范围 更广的 WPSH 控制,这是两类南风型暖区暴雨的 主要差异,也是为什么降水出现在广西而不是广东 的主要原因之一。对流层低层,两类南风型暖区暴 雨的主要差异在于低空急流中心的位置,广西型的 低空急流中心位置更偏西,且其对应的水汽条件也 更好(图 8c 和 8d)。此外,广西型暖区暴雨的低 空急流强度略强于广东型,其垂直运动也更强,造 成的降水也比广东的南风型暖区暴雨更强(图 3d 和 <u>3e</u>)。

综上所述,4类暖区暴雨的共同特点为,中高 纬度大气环流经向度较小,冷空气活动较弱,难以 影响低纬度地区;对流层中层,降水区主要位于西

20°N

12 m s⁻¹

(c)

18°N ↓ 103°E 105°E 125°E 110°E 115°E 120°E 107°E 111°E 100°E 图 6 同图 4, 但为回流型暖区暴雨个例的合成环流形势

Fig. 6 The same as Fig. 4, but for composite weather patterns of backflow warm-sector rainfall events

风带短波槽槽前,且不受副热带高压直接控制,但 具有一定的动力抬升条件;对流层低层,降水区均 受低空急流的影响,风速均随高度顺转,有暖平流 过程,具有从低纬度向华南地区的水汽输送条件。 各类暴雨的环流特征在对流层高中低层都有明显的 差异: 高层南亚高压的位置和强度不同所造成的高 层辐散条件的差异;对流层中层短波槽和 WPSH 的位置和强度不同带来的动力抬升条件和斜压性强 弱的不同;对流层低层主要是低空急流的位置、强 度带来的水汽输送条件和触发条件等的差异。

不同类型暖区暴雨的环境参数分析 5

暖区暴雨作为一种华南地区重要的降水类型, 其降水强度强,具有明显的中尺度特征,常与强对 流活动相联系,前人研究指出暖区暴雨的影响系统 一般不是特别清楚,但仍然处于有利对流发生的环 境中,具有对流有效位能大、气柱含水量高、对流 不稳定层次深厚等特点(黄士松等, 1986; 赵玉春

等,2008)。本文的合成环流特征分析给出不同类 型的天气尺度环流系统的异同,但是仅凭大尺度环 流特征难以准确预报暖区暴雨,而环境参数特征有 助于揭示对流天气发生的物理过程,在实际预报中 具有一定的指示意义(Tian et al., 2015)。

26卷

Vol. 26

(d) 12 m s⁻¹

119°E

115°E

本文主要研究一些与对流发生高度相关的关键 环境参数在不同类型暖区暴雨的差异。风切变是影 响对流发展和组织的重要动力条件,已有研究采用 观测资料揭示了对流组织化和环境风垂直切变的关 系 (Bluestein and Jain, 1985; Parker and Johnson, 2000; Schumacher and Johnson, 2005),利用数值 模式研究风切变对中尺度对流的影响(Rotunno et al., 1988; Weisman and Rotunno, 2004; 郑淋和孙 建华, 2016), 这些研究都表明对流层中低层的垂 直风切变在对流发展和组织中有重要的作用。本文 研究垂直风切变时以 1000 hPa 到 700 hPa 垂直风切 变代表 0~3 km 风切变,用 1000~400 hPa 的垂 直风切变代表 0~6 km 风切变。利用 700 hPa 与 500 hPa、850 hPa 与 500 hPa 之间的温差来代表大

55°N

45°N

35°N

25°N

15°N

5°N

35°N

30°N

25°N

20°N

15°N

刘瑞鑫等:不同类型华南暖区暴雨过程的环流特征 LIU Ruixin et al. Comparison of Synoptic Circulation Characteristics in Different Types ...

Fig. 7 The same as Fig. 4, but for composite weather patterns of south wind warm-sector rainfall events in the Guangdong Province

气中层和下层的温度递减率,以此来表示静力稳定 度的强弱,同时研究对流有效位能(Convective Available Potential Energy, CAPE)在不同类型暖 区暴雨里的差异。主要比较不同类型暖区暴雨的这 几个重要环境参数在关键区的差别。

表3给出了不同类型暖区暴雨关键区域环境背 景参数的平均值。从表中可以看出:虽然低涡型和 切变线型暖区暴雨都发生在广西地区,但是低涡型 的CAPE 值大于切变线型,且是5类里面最强的一 类,表明低涡型暖区暴雨的热力条件较好。对于回 流型暖区暴雨,由于其发生条件较为特殊,其 CAPE 值为5类里最小的,可能原因是这一类个例 都发生在春季,大气环境的斜压性大(图 2d), 动力强迫比热力强迫的作用明显。5类暖区暴雨中 切变线型暖区暴雨的0~3 km的垂直风切变最大, 说明此类系统在对流层低层斜压性较强,这与上文 中 EGR 计算的结果相一致。相对于非南风型暖区 暴雨,两类南风型暖区暴雨的0~3 km 垂直风切变 应相对较小,环境场斜压性较弱。除了回流型暖区 暴雨,其他各类暖区暴雨的0~3 km 与0~6 km 垂

直风切变相差不大。对于回流型暖区暴雨,0~6 km 垂直风切变为 17.22 m/s, 明显大于其他类型, 且 约2倍于该类的0~3km的垂直风切变,说明该类 暴雨的环境场从对流层中层到低层均具有较强的斜 压性。切变线型暖区暴雨的中低层切变也较强,与 斜压性分析一致。比较 850 hPa 和 500 hPa 之间的 温差或 700 hPa 和 500 hPa 之间的温差差异发现, 不同类型暖区暴雨中这两个环境参量变化基本一致, 回流型暖区暴雨是5类里温差最大的,说明发生回 流型暖区暴雨前,高低层温差更大,中低层的大气 层结更不稳定。相比较而言, 南风型暖区暴雨这两 个参量值相对较小,说明这类暖区暴雨发生时条件 不稳定度较小,比较两类南风型暖区暴雨,发生在 广东地区南风型的 CAPE 以及垂直风切变明显高于 发生在广西地区的类型,因此,南风型暖区暴雨的 触发和维持机理可能更为复杂,需要进一步研究。

综合上述分析,回流型暖区暴雨关键区斜压性 最强,其影响系统主要在对流层低层,高低层温差 较大,具有较高的条件不稳定度,在回流东风作用 下上升运动产生对流,对流系统主要在沿海地区。

15°N		1.5				(c) 12 m s^{-1}	18°N				(d) $\overrightarrow{12 \text{ m s}^{-1}}$
15 1	00°E	105°E	110°E	115°E	120°E	125°E	103°E	107°E	111°E	115°E	119°E
图 8	同图4,	但为广西:	地区南风型	暖区暴雨	个例的合成	、环流形势					

Fig. 8 The same as Fig. 4, but for composite weather patterns of south wind warm-sector rainfall events in the Guangxi Zhuang Autonomous Region

衣 3 不同关望版区泰丽环境多级的大键区区域十均值	表 3	不同类型暖区暴雨环境参数的关键区区域平均值
---------------------------	-----	-----------------------

Table 3 Average environmental physical parameters of the different types of warm-sector rainfall in the key regions

暖区暴雨类型	CAPE/J kg ⁻¹	0~3 km风切变/m s ⁻¹	0~6 km风切变/ m s ⁻¹	850 hPa与500 hPa之间的温差/°C	700 hPa与500 hPa之间的温差/°C
切变线型	922.78	9.76	9.09	23.28	15.04
低涡型	1144.21	7.75	7.14	22.65	14.55
回流型	753.21	8.41	17.22	24.44	15.65
广东南风型	1084.45	7.31	7.28	22.13	14.26
广西南风型	855.76	4.56	4.93	22.39	14.09

切变线型和低涡型在关键区的斜压性比回流型弱, 但切变线型暖区暴雨 0~3 km 垂直风切变最强,而 低涡型暖区暴雨 CAPE 值最强。两类南风型暖区暴 雨斜压性较弱,垂直风切变和高低层温差都较小, 因此,南风型暖区暴雨是最难预报的一类。

6 结论与讨论

本文在刘瑞鑫等(2019)对华南暖区暴雨的分 类和统计研究的基础上,挑选不同类型暖区暴雨典 型个例,研究不同类型暖区暴雨的天气尺度环流特 征和对流系统发生的环境参数特征,研究得到如下 主要结论,并总结了暖区暴雨的天气学模型。

(1)利用 EGR 的分析表明,切变线型、低涡 型和回流型暖区暴雨的环境场斜压性较强,南风型 暖区暴雨的环境场斜压性相对较弱。

(2)切变线型和低涡型为两类天气尺度影响 系统较为明显的暖区暴雨类型,降水区域主要为广 西地区(图9和图10)。两者在对流层中高层环 流系统相似,中高纬度基本为较平直的西风气流, 在降水区域附近有浅槽影响,对流层低层有切变线 或低涡系统与之对应,该系统为暖区降水提供了有

图 9 切变线型暖区暴雨天气学概念模型,绿色阴影为降水区域, 黄色阴影为上升运动区域(颜色越深表示上升运动越强),红色 五角星为暴雨中心。850 hPa 棕色实线代表切变线,粉色圈为该层 低空急流区域,蓝色空心箭头代表该层水平风。925 hPa 黑色圈为 该层低空急流区域,蓝色实心箭头为该层水平风

Fig. 9 Schematic model for the shear line warm-sector rainfall events. The green shading indicates the precipitation region; the yellow shading is the upward motion region (the darker color represents the stronger upward motion); the red pentagram star is the center of heavy precipitation. The brown solid line represents the shear line on 850 hPa; the pink circle represents the low-level jet; the blue hollow arrow represents the horizontal wind on 850 hPa. The black circle represents the low-level jet on 925 hPa and the blue solid arrow represents the horizontal wind on 925 hPa

利的动力抬升条件,并且这两类暖区暴雨区内陆地 区的垂直运动要强于沿海地区。两类暖区暴雨中高 层环流的不同之处在于切变线型 500 hPa 短波槽比 低涡型更强, 而低涡型南亚高压的影响范围要比切 变型要大。环流特征的差异主要在对流层低层,切 变线型暖区暴雨中的切变线系统主要位于降水区的 北部(图9),低空急流的位置更为偏西,且在对 流层低层(925 hPa)为偏南急流输送水汽至降水 区域,而低涡型暖区暴雨,降水区域北部的低涡系 统更偏东,低空急流的位置也偏东(图10),且 低空急流和垂直运动强度比切变线型略弱,但水汽 条件更好。两类降水中尺度环境特征差异为: 切变 线型暖区暴雨的环境场 0~3 km 垂直切变是 5 类中 最强的,说明产生这类暴雨的动力条件较好,而低 涡型暖区暴雨中尺度环境场中 CAPE 值 5 类里最大, 则表明其环境场的热力条件相对较好。

(3)回流型暖区暴雨的影响系统主要在对流 层中低层(图11),这类暖区暴雨斜压性较强, 发生期间 WPSH 与气候态相比偏西偏北,强度明 显偏强。对流层低层(925 hPa),海上冷高压西 南部的回流东风输送海上冷湿空气到广东沿海,与 西南气流输送的暖湿空气汇合抬升产生降水。该类

图 10 同图 9,但为低涡型暖区暴雨天气学概念模型,蓝色线为 位势高度,绿色线为显著湿区,L代表低压系统

Fig. 10 The same as Fig. 9, but for the low-vortex warm-sector rainfall events. The blue contour represents the geopotential height and the green line is the significant wet area. L stands for a low-pressure system

图 11 回流型暖区暴雨天气学概念模型,绿色阴影为降水区域, 红色五角星为降水中心,蓝色实线为 500 hPa 位势高度场,粉色实 线为 925 hPa 位势高度场,H 代表高压系统,绿色线为 925 hPa 显 著湿区,蓝色实心箭头代表回流风,蓝色空心箭头代表西南风 Fig. 11 Schematic model for backflow warm-sector rainfall events.

The green shading denotes the precipitation region; red pentagram star is the center of heavy precipitation; blue solid line is the geopotential height on 500 hPa; pink solid line is the geopotential height on 925 hPa; H stands for a high-pressure system. The green line indicates the significant wet area on 925 hPa. The blue solid arrow represents the easterly backflow wind and the blue hollow arrow represents the southwesterly wind

暖区暴雨一般与低空急流没有直接关系,高低层温 差较大,层结不稳定较显著。

(4)南风型暖区暴雨个例数目较多,分为广 西类和广东类。它们发生时对流层中层有弱浅槽影 响,低层的影响系统不明显,但南风型暖区暴雨的 降水位置与低空急流有着密切的关系。虽然两类南 风型暴雨的天气特征存在一些差异,但通过天气尺 度分析无法给出具体的影响系统或者有指示意义的 环境条件。已有的研究发现,在中国南部沿海地区, 有些局部对流触发距离明显的天气强迫较远,对流 的触发可能与海岸地形、海陆对比、前一天对流留下的冷池和边界层急流有关(Wu and Luo, 2016; Luo et al., 2017),也可能与边界层急流(1 km 以下)和天气尺度系统相关急流(1~4 km 范围内) 有关(Du et al., 2015; Du and Chen, 2018)。然而, 急流、地形、海陆对比、以及冷池等如何共同作用 影响对流的触发目前还不清楚,因此,对于南风型 暖区暴雨,将来需要针对对流的触发过程开展更深 入的研究。

参考文献(References)

- Bluestein H B, Jain M H. 1985. Formation of mesoscale lines of pirecipitation: Severe squall lines in Oklahoma during the spring [J].
 J. Atmos. Sci., 42(16): 1711–1732. doi:10.1175/1520-0469(1985) 042<1711:fomlop>2.0.co;2
- 陈翔翔, 丁治英, 刘彩虹, 等. 2012. 2000~2009 年 5、6 月华南暖区暴 雨形成系统统计分析 [J]. 热带气象学报, 28(5): 707-718. Chen Xiangxiang, Ding Zhiying, Liu Caihong, et al. 2012. Statistic analysis on the formation system of warm-sector heavy rainfall in May and June from 2000 -2009 [J]. Journal of Tropical Meteorology (in Chinese), 28(5): 707-718. doi:10.3969/j.issn.1004-4965.2012.05.010
- Chen X C, Zhao K, Xue M. 2014. Spatial and temporal characteristics of warm season convection over pearl river delta region, China, based on 3 years of operational radar data [J]. J. Geophys. Res. : Atmos., 119(22): 12447–12465. doi:10.1002/2014jd021965
- Chen X C, Zhao K, Xue M, et al. 2015. Radar-observed diurnal cycle and propagation of convection over the Pearl River Delta during Mei-Yu season [J]. J. Geophys. Res. : Atmos., 120(24): 12557–12575. doi:10.1002/2015jd023872
- Chen X C, Zhang F Q, Zhao K. 2017. Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Mei-Yu season coastal rainfall over South China [J]. J. Atmos. Sci., 74(9): 2835–2856. doi:10.1175/jas-d-17-0081.1
- 谌芸,陈涛,汪玲瑶,等. 2019. 中国暖区暴雨的研究进展 [J]. 暴雨灾害, 38(5): 483-493. Chen Yun, Chen Tao, Wang Lingyao, et al. 2019. A review of the warm-sector rainstorms in China [J]. Torrential Rain and Disasters (in Chinese), 38(5): 483-493. doi:10.3969/j.issn.1004-9045.2019.05.010
- 丁治英, 刘彩虹, 沈新勇. 2011. 2005~2008 年 5、6 月华南暖区暴雨 与高、低空急流和南亚高压关系的统计分析 [J]. 热带气象学报, 27(3): 307-316. Ding Zhiying, Liu Caihong, Shen Xinyong. 2011. Statistical analysis of the relationship among warm sector heavy rainfall, upper and lower tropospheric jet stream and South Asia High in May and June from 2005 to 2008 [J]. Journal of Tropical Meteorology (in Chinese), 27(3): 307-316. doi:10.3969/j.issn.1004-4965.2011.03.003
- Du Y, Chen G X. 2018. Heavy rainfall associated with double low-level jets over Southern China. Part I: Ensemble-based analysis [J]. Mon. Wea. Rev., 146(11): 3827–3844. doi:10.1175/mwr-d-18-0101.1

Du Y, Chen G X. 2019. Heavy rainfall associated with double low-level

jets over Southern China. Part II: Convection initiation [J]. Mon. Wea. Rev., 147(2): 543-565. doi:10.1175/mwr-d-18-0102.1

- Du Y, Chen Y L, Zhang Q H. 2015. Numerical simulations of the boundary layer jet off the southeastern coast of China [J]. Mon. Wea. Rev., 143(4): 1212–1231. doi:10.1175/mwr-d-14-00348.1
- 何立富, 陈涛, 孔期. 2016. 华南暖区暴雨研究进展 [J]. 应用气象学 报, 27(5): 559-569. He Lifu, Chen Tao, Kong Qi. 2016. A review of studies on prefrontal torrential rain in South China [J]. Journal of Applied Meteorological Science (in Chinese), 27(5): 559-569. doi:10.11898/1001-7313.20160505
- Hoskins B J, Valdes P J. 1990. On the existence of storm-tracks [J]. J. Atmos. Sci., 47(15): 1854–1864. doi:10.1175/1520-0469(1990)047< 1854:oteost>2.0.co;2
- 黄士松, 李真光, 包澄澜, 等. 1986. 华南前汛期暴雨 [M]. 广州: 广东 科技出版社, 1–7. Huang Shisong, Li Zhenguang, Bao Chenglan, et al. 1986. Heavy rainfalls in the pre-flood season in South China (in Chinese) [M]. Guangzhou: Guangdong Science and Technology Press, 1–7.
- 李德帅. 2016. 基于逐小时资料的华南地区汛期降水时空变化特征 及其成因研究 [D]. 兰州大学博士学位论文, 81pp. Li Deshuai. 2016. Research on the spatiotemporal characteristics of hourly precipitation over South China during the warm season and its possible causes [D]. Ph. D. dissertation (in Chinese), Lanzhou University, 81pp.
- 林良勋. 2006. 广东省天气预报技术手册 [M]. 北京: 气象出版社, 145-150. Lin Liangxun. 2006. Technical Guidance on Weather Forecasting in Guangdong Provinc (in Chinese) [M]. Beijing: Science Press, 145-150.
- 刘瑞鑫,孙建华,陈鲍发. 2019. 华南暖区暴雨事件的筛选与分类研 究 [J]. 大气科学, 43(1): 119–130. Liu Ruixin, Sun Jianhua, Chen Baofa. 2019. Selection and classification of warm-sector heavy rainfall events over South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(1): 119–130. doi:10.3878/j.issn.1006-9895.1803.17245
- Luo Y L, Wu M W, Ren F M, et al. 2016. Synoptic situations of extreme hourly precipitation over China [J]. J. Climate, 29(24): 8703–8719. doi:10.1175/jcli-d-16-0057.1
- Luo Y L, Zhang R H, Wan Q L, et al. 2017. The Southern China monsoon rainfall experiment (SCMREX) [J]. Bull. Amer. Meteor. Soc., 98(5): 999–1013. doi:10.1175/bams-d-15-00235.1
- Parker M D, Johnson R H. 2000. Organizational modes of midlatitude mesoscale convective systems [J]. Mon. Wea. Rev., 128(10): 3413–3436. doi:10.1175/1520-0493(2001)129<3413:omommc>2.0. co;2
- Rotunno R, Klemp J B, Weisman M L. 1988. A theory for strong, longlived squall lines [J]. J. Atmos. Sci., 45(3): 463–485. doi:10.1175/1520-0469(1988)045<0463:atfsll>2.0.co;2
- Schumacher R S, Johnson R H. 2005. Organization and environmental properties of extreme-rain-producing mesoscale convective systems [J]. Mon. Wea. Rev., 133(4): 961–976. doi:10.1175/mwr2899.1
- Simmons A, Uppala S, Dee D, et al. 2007. ERA-Interim: New ECMWF reanalysis products from 1989 onwards [J]. ECMWF Newsletter No. 110: 25–35. doi:10.21957/pocnex23c6

孙建华,赵思雄. 2000. 一次罕见的华南大暴雨过程的诊断与数值模

拟研究 [J]. 大气科学, 24(3): 381–392. Sun Jianhua, Zhao Sixiong. 2000. A diagnosis and simulation study of a strong heavy rainfall in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(3): 381–392. doi:10.3878/j.issn.1006-9895.2000. 03.10

- Sun J H, Zhang Y C, Liu R X, et al. 2019. A review of research on warm-sector heavy rainfall in China [J]. Adv. Atmos. Sci., 36(12): 1299–1307. doi:10.1007/s00376-019-9021-1
- 陶诗言.1980. 中国之暴雨 [M]. 北京: 科学出版社, 45-46. Tao Shiyan. 1980. Heavy rainstorm in China (in Chinese) [M]. Beijing:Science Press, 45-46.
- 陶诗言. 1996. 1994 年东亚夏季风活动的异常与华南的特大洪涝灾 害 [C]// 1994 年华南特大暴雨洪涝学术研讨会论文集. 北京: 气象 出版社, 1-5. Tao Shiyan. 1996. Study of anomaly of summer monsoon in East Asian and severe flooding in South China in 1994 (in Chinese) [C]// The conference on Severe Heavy Rain and Flood Fatality in the South of China in 1994. Beijing: China Meteorological Press, 1-5.
- Tian F Y, Zheng Y G, Zhang T, et al. 2015. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China [J]. J. Meteor. Res., 29(3): 370–384. doi:10.1007/s13351-014-4119-y
- 田付友, 郑永光, 张小玲, 等. 2018. 2017 年 5 月 7 日广州极端强降水 对流系统结构、触发和维持机制 [J]. 气象, 44(4): 469-484. Tian Fuyou, Zheng Yongguang, Zhang Xiaoling, et al. 2018. Structure, triggering and maintenance mechanism of convective systems during the Guangzhou extreme rainfall on 7 May 2017 [J]. Meteorological Monthly (in Chinese), 44(4): 469-484. doi:10.7519/j.issn.1000-0526.2018.04.001
- Weisman M L, Rotunno R. 2004. "A theory for strong long-lived squall lines" revisited [J]. J. Atmos. Sci., 61(4): 361–382. doi:10.1175/1520-0469(2004)061<0361:atfsls>2.0.co;2
- Wu M W, Luo Y L. 2016. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015 [J]. J. Meteor. Res., 30(5): 719–736. doi:10.1007/s13351-016-6089-8
- Wu M W, Luo Y L, Chen F. 2019. Observed link of extreme hourly precipitation changes to urbanization over coastal South China [J]. J. Appl. Meteor. Climatol., 58(8): 1799–1819. doi:10.1175/jamc-d-18-0284.1
- 伍志方, 蔡景就, 林良勋, 等. 2018. 2017 年广州 "5·7" 暖区特大暴 雨的中尺度系统和可预报性 [J]. 气象, 44(4): 485-499. Wu Zhifang, Cai Jingjiu, Lin Liangxun, et al. 2018. Analysis of mesoscale systems and predictability of the torrential rain process in

Guangzhou on 7 May 2017 [J]. Meteorological Monthly (in Chinese), 44(4): 485–499. doi:10.7519/j.issn.1000-0526.2018.04.002

- 夏茹娣,赵思雄. 2009. 2005 年 6 月广东锋前暖区暴雨 β 中尺度系统 特征的诊断与模拟研究 [J]. 大气科学, 33(3): 468-488. Xia Rudi, Zhao Sixiong. 2009. Diagnosis and modeling of Meso-β-scale systems of heavy rainfall in warm sector ahead of front in South China (middle part of Guangdong Province) in June 2005 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(3): 468-488. doi:10.3878/j.issn.1006-9895.2009.03.06
- 夏茹娣,赵思雄,孙建华. 2006. 一类华南锋前暖区暴雨 β 中尺度系 统环境特征的分析研究 [J]. 大气科学, 30(5): 988-1008. Xia Rudi, Zhao Sixiong, Sun Jianhua. 2006. A study of circumstances of Meso-β-scale systems of strong heavy rainfall in warm sector ahead of fronts in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 988-1008. doi:10.3878/j.issn.1006-9895.2006.05.26
- 叶朗明, 苗峻峰. 2014. 华南一次典型回流暖区暴雨过程的中尺度分析 [J]. 暴雨灾害, 33(4): 342-350. Ye Langming, Miao Junfeng. 2014. Mesoscale analysis of a typical heavy rain event caused by returning flow in the warm sector in southern China [J]. Torrential Rain and Disasters (in Chinese), 33(4): 342-350. doi:10.3969/j.issn.1004-9045.2014.04.006
- Yu R C, Zhou T J, Xiong A Y, et al. 2007. Diurnal variations of summer precipitation over contiguous China [J]. Geophys. Res. Lett., 34(1): L01704. doi:10.1029/2006gl028129
- Zhang M R, Meng Z Y. 2019. Warm-sector heavy rainfall in southern China and its WRF simulation evaluation: A low-level-jet perspective [J]. Mon. Wea. Rev., 147(12): 4461–4480. doi:10.1175/mwr-d-19-0110.1
- Zhang R H, Ni Y Q, Liu L P, et al. 2011. South China heavy rainfall experiments (SCHeREX) [J]. J. Meteor. Soc. Japan, 89A(2): 153–166. doi:10.2151/jmsj.2011-a10
- 赵玉春, 李泽椿, 肖子牛. 2008. 华南锋面与暖区暴雨个例对比分析 [J]. 气象科技, 36(1): 47-54. Zhao Yuchun, Li Zechun, Xiao Ziniu. 2008. Comparison analysis of South China front and warmarea heavy rain systems in June 2006 [J]. Meteorological Science and Technology (in Chinese), 36(1): 47-54. doi:10.3969/j.issn.1671-6345.2008.01.009
- 郑淋淋, 孙建华. 2016. 风切变对中尺度对流系统强度和组织结构影 响的数值试验 [J]. 大气科学, 40(2): 324-340. Zheng Linlin, Sun Jianhua. 2016. The impact of vertical wind shear on the intensity and organizational mode of mesoscale convective systems using numerical experiments [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 324-340. doi:10.3878/j.issn.1006-9895.1505. 14311